
Chapter 3

Feynman Path Integral

The aim of this chapter is to introduce the concept of the Feynman path integral. As well as
developing the general construction scheme, particular emphasis is placed on establishing
the interconnections between the quantum mechanical path integral, classical Hamiltonian
mechanics and classical statistical mechanics. The practice of path integration is discussed
in the context of several pedagogical applications: As well as the canonical examples of a
quantum particle in a single and double potential well, we discuss the generalisation of
the path integral scheme to tunneling of extended objects (quantum fields), dissipative and
thermally assisted quantum tunneling, and the quantum mechanical spin.

In this chapter we will temporarily leave the arena of many–body physics and second
quantisation and, at least superficially, return to single–particle quantum mechanics. By
establishing the path integral approach for ordinary quantum mechanics, we will set the
stage for the introduction of functional field integral methods for many–body theories
explored in the next chapter. We will see that the path integral not only represents a
gateway to higher dimensional functional integral methods but, when viewed from an
appropriate perspective, already represents a field theoretical approach in its own right.
Exploiting this connection, various techniques and concepts of field theory, viz. stationary
phase analyses of functional integrals, the Euclidean formulation of field theory, instanton
techniques, and the role of topological concepts in field theory will be motivated and
introduced in this chapter.

3.1 The Path Integral: General Formalism

Broadly speaking, there are two basic approaches to the formulation of quantum mechan-
ics: the ‘operator approach’ based on the canonical quantisation of physical observables
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64 CHAPTER 3. FEYNMAN PATH INTEGRAL

together with the associated operator algebra, and the Feynman1 path integral.2 Whereas
canonical quantisation is usually taught first in elementary courses on quantum mechan-
ics, path integrals seem to have acquired the reputation of being a sophisticated concept
that is better reserved for advanced courses. Yet this treatment is hardly justified! In fact,
the path integral formulation has many advantages most of which explicitly support an
intuitive understanding of quantum mechanics. Moreover, integrals — even the infinite
dimensional ones encountered below — are hardly more abstract than infinite dimensional
linear operators. Further merits of the path integral include the following:

⊲ Whereas the classical limit is not always easy to retrieve within the canonical for-
mulation of quantum mechanics, it constantly remains visible in the path integral
approach. In other words, the path integral makes explicit use of classical mechan-
ics as a basic ‘platform’ on which to construct a theory of quantum fluctuations.
The classical solutions of Hamilton’s equation of motion always remain a central
ingredient of the formalism.3

⊲ Path integrals allow for an efficient formulation of non–perturbative approaches to
the solution of quantum mechanical problems. For example, the ‘instanton’ for-
mulation of quantum tunnelling discussed below — whose extension to continuum
theories has led to some of the most powerful concepts of quantum field theory —
makes extensive use of the classical equations of motion when it is tailored to a path
integral formulation.

⊲ The Feynman path integral represents a prototype of the higher dimensional func-
tional field integrals to be introduced in the next chapter. However,...

⊲ ...even in its ‘zero–dimensional’ form discussed in this chapter, the path integral
is of relevance to a wide variety of applications in many–body physics: Very of-
ten, one encounters enviroments such as the superconductor, superfluid, or strongly
correlated few electron devices where a macroscopically large number of degrees of

1

Richard P. Feynman 1918–1988:
1965 Nobel Laureate in Physics
(with Sin–Itiro Tomonaga, and Ju-
lian Schwinger) for fundamental
work in quantum electrodynamics,
with deep–ploughing consequences
for the physics of elementary parti-
cles.

2For a more extensive introduction to the Feynman path integral, one can refer to one of the many
standard texts including Refs. [9, 16, 20] or, indeed, one may turn to the original paper, R. P. Feyn-
man, Space–time approach to non–relativistic quantum mechanics, Rev. Mod. Phys. 20, 367 (1948).
Historically, Feynman’s development of the path integral was motivated by earlier work by Dirac on the
connection between classical and quantum mechanics, P. A. M. Dirac, On the analogy between classical

and quantum mechanics, Rev. Mod. Phys. 17, 195 (1945).
3For this reason, path integration has turned out to be an indispensable tool in fields such as quantum

chaos where the quantum manifestations of classically non–trivial behaviour are investigated — for more
details, see section 3.2.2 below.

Concepts in Theoretical Physics



3.1. THE PATH INTEGRAL: GENERAL FORMALISM 65

freedom ‘lock’ to form a single collective variable. (For example, to a first approx-
imation, the phase information carried by the order parameter field in moderatly
large superconducting grains can often be described in terms of a single phase de-
gree of freedom, i.e. a ‘quantum particle’ living on the complex unit circle.) Path
integral techniques have proven ideally suited to the analysis of such systems.

What, then, is the basic idea of the path integral approach? More than any other
formulation of quantum mechanics, the path integral formalism is based on connections
to classical mechanics. The variational approach employed in chapter ?? relied on the fact
that classically allowed trajectories in configuration space extremize an action functional.
A principal constraint to be imposed on any such trajectory is energy conservation. By
contrast, quantum particles have more freedom than their classical counterparts. In par-
ticular, by the Uncertainty Principle, energy conservation can be violated by an amount
∆E over a time ∼ ~/∆E (here, and throughout this chapter, we will reinstall ~ for
clarity). The connection to action principles of classical mechanics becomes particularly
apparent in problems of quantum tunneling: A particle of energy E may tunnel through a
potential barrier of height V > E. However, this process is penalized by a damping factor
∼ exp(i

∫
barrier

dx p/~), where p =
√

2m(E − V ), i.e. the exponent of the (imaginary)
action associated with the classically forbidden path.

These observations motivate the idea of a new formulation of quantum propagation:
Could it be that, as in classical mechanics, the quantum amplitude A for propagation
between any two points in coordinate space is again controlled by the action functional?
— controlled in a relaxed sense where not just a single extremal path xcl(t), but an entire
manifold of neighbouring paths contribute. More specifically, one might speculate that
the quantum amplitude is obtained as A ∼

∑
x(t) exp(iS[x]/~), where

∑
x(t) symbolically

stands for a summation over all paths compatible with the initial conditions of the prob-
lem, and S denotes the classical action. Although, at this stage, no formal justification for
the path integral has been presented, with this ansatz, some features of quantum mechan-
ics would obviously be born out correctly: Specifically, in the classical limit (~ → 0), the
quantum mechanical amplitude would become increasingly dominated by the contribution
to the sum from the classical path xcl(t). This is because non–extremal configurations
would be weighted by a rapidly oscillating amplitude associated with the large phase S/~
and would, therefore, average to zero.4 Secondly, quantum mechanical tunneling would be
a natural element of the theory; non–classical paths do contribute to the net–amplitude,
but at the cost of a damping factor specified by the imaginary action (as in the traditional
formulation).

Fortunately, no fundamentally novel ‘picture’ of quantum mechanics needs to be de-
clared to promote the idea of the path ‘integral’

∑
x(t) exp(iS[x]/~) to a working theory.

As we will see in the next section, the new formulation can quantitatively be developed
from the same principles of canonical quantization.

4More precisely, in the limit of small ~, the path sum can be evaluated by saddle–point methods, as
detailed below.
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3.2 Construction of the Path Integral

All information about any autonomous5 quantum mechanical system is contained in
the matrix elements of its time evolution operator. A formal integration of the time–
dependent Schrödinger equation i~∂t|Ψ〉 = Ĥ|Ψ〉 obtains the time evolution operator

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = e−
i
~
Ĥ(t′−t)Θ(t′ − t) . (3.1)

The operator Û(t′, t) describes dynamical evolution under the influence of the Hamiltonian
from a time t to time t′. Causality implies that t′ > t as indicated by the step or Heaviside
Θ–function. In the real space representation we can write

Ψ(q′, t′) = 〈q′|Ψ(t′)〉 = 〈q′|Û(t′, t)Ψ(t)〉 =

∫
dq U(q′, t′; q, t)Ψ(q, t) ,

where U(q′, t′; q, t) = 〈q′|e− i
~
Ĥ(t′−t)|q〉Θ(t′ − t) defines the (q′, q) component of the time

evolution operator. As the matrix element expresses the probability amplitude for a
particle to propagate between points q and q′ in a time t′ − t, it is sometimes known as
the propagator of the theory.

The basic idea behind Feynman’s path integral approach is easy to formulate. Rather
than attacking the Schrödinger equation governing the time evolution for general times t,
one may first attempt to solve the much simpler problem of describing the time evolution
for infinitesimally small times ∆t. In order to formulate this idea quantitatively one must
first ‘divide’ the time evolution operator into N ≫ 1 discrete ‘time steps’,

e−iĤt/~ =
[
e−iĤ∆t/~

]N
, (3.2)

where ∆t = t/N . Albeit nothing more than a formal rewriting of Eq. (3.1), the repre-

sentation (3.2) has the advantage that the factors e−iĤ∆t/~ (or, rather, their expectation
values) are small. (More precisely, if ∆t is much smaller than the (reciprocal of the)
eigenvalues of the Hamiltonian in the regime of physical interest, the exponents are small
in comparison with unity and, as such, can be treated perturbatively.) A first simplifica-
tion arising from this fact is that the exponentials can be factorised into two pieces each
of which can be readily diagonalised. To achieve this factorisation, we make use of the
identity

e−iĤ∆t/~ = e−iT̂∆t/~e−iV̂∆t/~ +O(∆t2) ,

where the Hamiltonian Ĥ = T̂ + V̂ is the sum of a kinetic energy T̂ = p̂2/2m, and some
potential energy operator V̂ .6 (The following analysis, restricted for simplicity to a one–
dimensional Hamiltonian, is easily generalised to arbitrary spatial dimension.) The key

5A system is classified as autonomous if its Hamiltonian does not explicitly depend on time. Actually
the construction of the path integral can be straightforwardly extended so as to include time–dependent
problems. However, in order to keep the introductory discussion as simple as possible, here we assume
time–independence.

6Although this ansatz already covers a wide class of quantum mechanical problems, many applications
of practical importance (e.g. Hamiltonians involving spin or magnetic fields) do not fit into this frame-
work. For a detailed exposition covering its realm of applicability, we refer to the specialist literature
such as, e.g., Schulman’s text [20].
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advantage of this factorisation is that the eigenstates of each of the factors e−iT̂∆t/~ and
e−iV̂∆t/~ are known independently. To exploit this fact we consider the time evolution
operator factorised as a product,

〈qF |
[
e−iĤ∆t/~

]N
|qI〉 ≃ 〈qF |∧e

−iT̂∆t/~e−iV̂∆t/~

∧ . . .∧e
−iT̂∆t/~e−iV̂∆t/~|qI〉 (3.3)

and insert at each of the positions indicated by the symbol ‘∧’ the resolution of identity

id. =

∫
dqn

∫
dpn|qn〉〈qn|pn〉〈pn| . (3.4)

Here |qn〉 and |pn〉 represent a complete set of position and momentum eigenstates respec-
tively, and n = 1, . . . , N serves as an index keeping track of the time steps at which the
unit operator is inserted. The rational behind the particular choice (3.4) is clear. The unit
operator is arranged in such a way that both T̂ and V̂ act on the corresponding eigenstates.
Inserting (3.4) into (3.3), and making use of the identity 〈q|p〉 = 〈p|q〉∗ = eiqp/~/(2π~),
one obtains

〈qF |e−iĤt/~|qI〉 ≃
∫ N−1∏

n=1
qN =qF ,q0=qI

dqn

N∏

n=1

dpn
2π~

e
−i∆t

~

PN−1
n=0

“

V (qn)+T (pn+1)−pn+1
qn+1−qn

∆t

”

. (3.5)

Thus, the matrix element of the time evolution operator has been expressed as a 2N − 1
dimensional integral over eigenvalues. Up to corrections of higher order in V∆t/~ and
T∆t/~, the expression (3.5) is exact. At each ‘time step’ tn = n∆t, n = 1, . . . , N we are
integrating over a pair of coordinates xn ≡ (qn, pn) parametrising the classical phase

space. Taken together, the points {xn} form an N–point discretization of a path in this
space (see Fig. 3.1).

q I

q
F

tn

p

0N N-1

Phase
Space

t

Figure 3.1: Left: visualisation of a set of phase space points contributing to the discrete
time configuration integral (3.5). Right: in the continuum limit, the set of points becomes
a smooth curve.

To make further progress, we need to develop some intuition for the behaviour of the
integral (3.5). We first notice that rapid fluctuations of the integration arguments xn as
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a function of the index n are strongly inhibited by the structure of the integrand. When
taken together, contributions for which (qn+1−qn)pn+1 > O(~) (i.e. when the phase of the
exponential exceeds 2π) tend to lead to a ‘random phase cancellation’. In the language of
wave mechanics, the ‘incoherent’ superposition of different Feynman paths destructively
interferes. The smooth variation of the paths which contribute significantly motivate the
application of a continuum limit analogous to that employed in chapter ??.

To be specific, sending N → ∞ whilst keeping t = N∆t fixed, the formerly discrete
set tn = n∆t, n = 1, . . . , N becomes dense on the time interval [0, t], and the set of phase
space points {xn} becomes a continuous curve x(t). In the same limit,

∆t

N−1∑

n=0

7→
∫ t

0

dt′,
qn+1 − qn

∆t
7→ ∂t′q

∣∣∣
t′=tn

≡ q̇|t′=tn ,

while [V (qn) + T (pn+1)] 7→ [T (p|t′=tn) + V (q|t′=tn)] ≡ H(x|t′=tn) denotes the classical
Hamiltonian. In the limit N → ∞, the fact that kinetic and potential energies are
evaluated at neighbouring time slices, n and n+ 1, becomes irrelevant.7 Finally,

lim
N→∞

∫ N−1∏

n=1
qN =qF ,q0=qI

dqn

N∏

n=1

dpn
2π~

≡
∫

q(t)=qF
q(0)=qI

Dx

defines the integration measure of the integral.

⊲ Info. Integrals extending over infinite dimensional integration measures like D(q, p)

are generally called functional integrals (recall our discussion of functionals in chapter ??).

The question of how functional integration can be rigorously defined is far from innocent and

represents a subject of current, and partly controversial mathematical research. In this book —

as in most applications in physics — we take a pragmatic point of view and deal with the infinite

dimensional integration naively unless mathematical problems arise (which actually won’t be the

case!).

——————————————–

Then, applying these conventions to Eq. (3.5), one finally obtains

〈qF |e−iĤt/~|qI〉 =

∫

q(t)=qF
q(0)=qI

Dx exp

[
i

~

∫ t

0

dt′ (pq̇ −H(p, q))

]
(3.6)

7To see this formally, one may Taylor expand T (pn+1) = T (p(t′+∆t))|t′=n∆t around p(t′). For smooth
p(t′), all but the zeroth order contribution T (p(t′)), scale with powers of ∆t, thereby becoming irrelevant.
Note, however, that all of these arguments are based on the assertion that the dominant contributions to
the path integral are smooth in the sense qn+1− qn ∼ O(∆t). A closer inspection, however, shows that in
fact qn+1 − qn ∼ O(

√
∆t) [20]. In some cases, the most prominent one being the quantum mechanics of

a particle in a magnetic field, the lowered power of ∆t spoils the naive form of the continuity argument
above, and more care must be applied in taking the continuum limit. In cases where a ‘new’ path
integral description of a quantum mechanical problem is developed, it is imperative to delay taking the
continuum limit until the fluctuation behaviour of the discrete integral across individual time slices has
been thoroughly examined.
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Eq. (3.6) represents the Hamiltonian formulation of the path integral: The integra-
tion extends over all possible paths through the classical phase space of the system which
begin and end at the same configuration points qI and qF respectively (cf. Fig. 3.1). The
contribution of each path is weighted by its Hamiltonian action.

Before we turn to the discussion of the path integral (3.6), it is first useful to recast
the integral in an alternative form which will be both convenient in various applications
and physically instructive. The search for an alternative formulation is motivated by the
observation of the close resemblance of (3.6) with the Hamiltonian formulation of classical
mechanics. Given that, classically, Hamiltonian and Lagrangian mechanics can be equally
employed to describe dynamical evolution, it is natural to seek a Lagrangian analogue of
(3.6). Until now, we have made no assumption about the momentum dependence of the
kinetic energy T (p). However, if we focus on Hamiltonians in which the dynamics is free,
i.e. the kinetic energy dependence is quadratic in p, the Lagrangian form of the path
integral can be inferred from (3.6) by Gaussian integration.

To make this point clear, let us rewrite the integral in a way that emphasises its
dependence on the momentum variable p:

〈qF |e−iĤt/~|qI〉 =

∫

q(t)=qF
q(0)=qI

Dq e−
i
~

R t

0
dt′V (q)

∫
Dp e

− i
~

R t

0
dt′

„

p2

2m
−pq̇

«

. (3.7)

The exponent of the integral is quadratic in the momentum variable or, equivalently, the
integral is Gaussian in p. Carrying out the integration by means of Eq. (3.13) below, one
obtains

〈qF |e−iĤt/~|qI〉 =

∫

q(t)=qF
q(0)=qI

Dq exp

[
i

~

∫ t

0

dt′L(q, q̇)

]
(3.8)

where Dq = limN→∞( Nm
it2π~

)N/2
∏N−1

n=1 dqn denotes the functional measure of the remaining
q–integration, and L(q, q̇) = mq̇2/2 − V (q) represents the classical Lagrangian. Strictly
speaking, the (finite–dimensional) integral formula (3.13) is not directly applicable to
the infinite dimensional Gaussian integral (3.7). This, however, does not represent a
substantial problem as we can always rediscretise the integral (3.7), apply Eq. (3.13), and
reinstate the continuum limit after integration (exercise).

Together Eqs. (3.6) and (3.8) represent the central results of this section. A quantum
mechanical transition amplitude has been expressed in terms of an infinite dimensional
integral extending over paths through phase space (3.6) or coordinate space (3.8). All
paths begin (end) at the initial (final) coordinate of the matrix element. Each path
is weighted by its classical action. Notice in particular that the quantum transition
amplitude has been cast in a form which does not contain quantum mechanical operators.
Nonetheless, quantum mechanics is still fully present! The point is that the integration
extends over all paths and not just the subset of solutions of the classical equations of
motion. (The distinguished role classical paths play in the path integral will be discussed
below in section 3.2.2.) The two forms of the path integral, (3.6) and (3.8), represent
the formal implementation of the ‘alternative picture’ of quantum mechanics proposed
heuristically at the beginning of the chapter.
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⊲ Info. Gaussian Integration: Apart from a few rare exceptions, all integrals encountered
in this course will be of Gaussian8 form. In most cases the dimension of the integrals will be
large if not infinite. Yet, after a bit of practice, it will become clear that high dimensional
representatives of Gaussian integrals are no more difficult to handle than their one–dimensional
counterparts. Therefore, considering the important role played by Gaussian integration in field
theory, we will here derive the principle formulae once and for all. Our starting point is the
one–dimensional integral (both real and complex). The basic ideas underlying the proofs of
the one–dimensional formulae, will provide the key to the derivation of more complex, multi–
dimensional and functional identities which will be used liberally throughout the remainder of
the text.

One–dimensional Gaussian integral: The basic ancestor of all Gaussian integrals is the
identity

∫ ∞

−∞
dx e−

a
2
x2

=

√
2π

a
, Re a > 0 (3.9)

In the following we will need various generalisations of Eq. (3.9). Firstly, we have
∫∞
−∞ dx e−ax

2/2x2 =√
2π/a3, a result established either by substituting a→ a+ ǫ in Eq. (3.9) and expanding both

the left and the right side of the equation to leading order in ǫ, or by differentiating Eq. (3.9).
Often one encounters integrals where the exponent is not purely quadratic from the outset but
rather contains both quadratic and linear pieces. The generalisation of Eq. (3.9) to this case
reads ∫ ∞

−∞
dx e−

a
2
x2+bx =

√
2π

a
e

b2

2a . (3.10)

To prove this identity, one simply eliminates the linear term by means of the change of variables
x → x + b/a which transforms the exponent to ax2/2 + bx → −ax2/2 + b2/2a. The constant
factor scales out and we are left with Eq. (3.9). Note that Eq. (3.10) holds even for complex b.
The reason is that by shifting the integration contour into the complex plane no singularities
are encountered, i.e. the integral remains invariant.

Later, we will be concerned with the generalisation of the Gaussian integral to complex
arguments. In this case, the extension of Eq. (3.9) reads

∫
d(z̄, z)e−z̄wz =

π

w
, Re w > 0 ,

where z̄ represents the complex conjugate of z. Here,
∫
d(z̄, z) ≡

∫∞
−∞ dxdy represents the

independent integration over the real and imaginary parts of z = x + iy. The identity is easy
to prove: Owing to the fact that z̄z = x2 + y2, the integral factorizes into two pieces each of
which is equivalent to Eq. (3.9) with a = w. Similarly, it may be checked that the complex

8

Johann Carl Friedrich Gauss 1777-1855: worked in
a wide variety of fields in both mathematics and physics
incuding number theory, analysis, differential geometry,
geodesy, magnetism, astronomy and optics. Portrait taken
from the former German 10–Mark note. (Unfortunately,
the subsequently introduced Euro notes no longer display
Gauss’ portrait.)
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generalisation of Eq. (3.10) is given by
∫
d(z̄, z)e−z̄wz+ūz+z̄v =

π

w
e

ūv
w , Re w > 0 . (3.11)

More importantly ū and v may be independent complex numbers; they need not be related to
each other by complex conjugation (exercise).

Gaussian integration in more than one dimension: All of the integrals above have higher
dimensional counterparts. Although the real and complex versions of the N–dimensional integral
formulae can be derived in a perfectly analogous manner, it is better to discuss them seperately
in order not to confuse the notation.

(a) Real Case: The multi–dimensional generalisation of the prototype integral (3.9) reads
∫
dve−

1
2
vT Av = (2π)N/2detA−1/2 , (3.12)

where A is a positive definite real symmetric N–dimensional matrix and v is an N–component
real vector. The proof makes use of the fact that A (by virtue of being symmetric) can be
diagonalised by orthogonal transformation, A = OTDO, where the matrix O is orthogonal,
and all elements of the diagonal matrix D are positive. The matrix O can be absorbed into the
integration vector by means of the variable transformation, v 7→ Ov which has unit Jacobian,
detO = 1. As a result, we are left with a Gaussian integral with exponent −vTDv/2. Due
to the diagonality of D, the integral factorizes into N independent Gaussian integrals each of
which contributes a factor

√
2π/di, where di, i = 1, . . . , N is the ith entry of the matrix D.

Noting that
∏N
i=1 di = detD = detA, (3.12) is derived.

The multi–dimensional generalization of (3.10) reads
∫
dve−

1
2
vT Av+jT ·v = (2π)N/2detA−1/2e

1
2
jT A−1j (3.13)

where j is an arbitrary N–component vector. Eq. (3.13) is proven by analogy with Eq. (3.10),
i.e. by shifting the integration vector according to v → v + A−1j, which does not change
the value of the integral but removes the linear term from the exponent, −1

2v
TAv + jT · v →

−1
2v

TAv + 1
2 j
TA−1j. The resulting integral is of the type (3.12), and we arrive at Eq. (3.13).

The integral (3.13) is not only of importance in its own right, but it also serves as a ‘gen-
erator’ of other useful integral identities. Applying the differentiation operation ∂2

jmjn |j=0 to

the left and the right hand side of Eq. (3.13), one obtains the identity9
∫
dve−

1
2
vT Avvmvn =

(2π)N/2detA−1/2A−1
mn. This result can be more compactly formulated as

〈vmvn〉 = A−1
mn, (3.14)

where we have introduced the shorthand notation

〈. . .〉 ≡ (2π)−N/2detA1/2

∫
dve−

1
2
vT Av(. . .) , (3.15)

suggesting an interpretation of the Gaussian weight as a probability distribution.
Indeed, the differentiation operation leading to (3.14) can be iterated: Differentiating four

times, one obtains 〈vmvnvqvp〉 = A−1
mnA

−1
qp + A−1

mqA
−1
np + A−1

mpA
−1
nq . One way of memorising the

9Note that the notation A−1
mn refers to the mn element of the matrix A−1.
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structure of this — important — identity is that the Gaussian ‘expectation’ value 〈vmvnvpvq〉
is given by all ‘pairings’ of type (3.14) that can be formed from the four components vm. This
rule generalises to expectation values of arbitrary order: 2n–fold differentiation of (3.13) yields

〈vi1vi2 . . . vi2n〉 =
∑

all possible
pairings of{i1,...i2n}

A−1
ik1

ik2
. . . A−1

ik2n−1
ik2n

(3.16)

This result is the mathematical identity underlying Wick’s theorem (for real bosonic fields).

(b) Complex Case: The results above are straightforwardly extended to multi–dimensional
complex Gaussian integrals. The complex version of Eq. (3.12) is given by

∫
d(v†,v)e−v†Av = πNdetA−1 , (3.17)

where v is a complex N–component vector, d(v†,v) ≡ ∏N
i=1 dRe vi dIm vi, and A is a complex

matrix with positive definite Hermitian part. (Remember that every matrix can be decomposed
into a Hermitian and an anti–Hermitian component, A = 1

2(A+A†)+ 1
2(A−A†).) For Hermitian

A, the proof of (3.17) is analogous to (3.12), i.e. A is unitarily diagonalisable, A = U†AU; the
matrices U can be transformed into v, the resulting integral factorises, etc. For non–Hermitian
A the proof is more elaborate, if unedifying, and we refer to the literature for details. The
generalization of Eq. (3.17) to exponents with linear contributions reads

∫
d(v†,v)e−v†Av+w†·v+v†·w′

= πNdetA−1ew
†A−1w′

(3.18)

Note that w and w′ may be independent complex vectors. The proof of this identity mirrors that
of (3.13), i.e. by effecting the shift v† → v† + w†, v → v + w′.10 As with Eq. (3.13), Eq. (3.18)
may also serve as a generator of related integral identities. Differentiating the integral twice
according to ∂2

wm,w′
n
|w=w′=0 gives

〈v̄mvn〉 = A−1
nm ,

where 〈· · ·〉 ≡ π−NdetA
∫
d(v†,v)e−v†Av(· · ·). The iteration to more than two derivatives gives

〈v̄nv̄mvpvq〉 = A−1
pmA

−1
qn +A−1

pnA
−1
qm and, eventually,

〈v̄i1 v̄i2 . . . v̄invj1vj2 . . . vjn〉 =
∑

P

A−1
j1iP1

. . . A−1
jniPn

where
∑

P represents for the sum over all permutations of N integers.

Gaussian Functional Integration: With this preparation, we are in a position to in-
vestigate the main practice of quantum and statistical field theory — the method of Gaussian
functional integration. Turning to Eq. (3.13), let us suppose that the components of the vector
v parameterise the weight of a real scalar field on the sites of a one–dimensional lattice. In the
continuum limit, the set {vi} translates to a function v(x), and the matrix Aij is replaced by an

10For an explanation of why v and v† may be shifted independently of each other, cf. the analyticity
remarks made in connection with (3.11).
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operator kernel or propagator A(x, x′). In this limit, the natural generalisation of Eq. (3.13)
is

∫
Dv(x) exp

[
−1

2

∫
dx dx′v(x)A(x, x′)v(x′) +

∫
dx j(x)v(x)

]

∝ (detA)−1/2 exp

[
1

2

∫
dx dx′ j(x)A−1(x, x′)j(x′)

]
, (3.19)

where the inverse kernel A−1(x, x′) satisfies the equation

∫
dx′ A(x, x′)A−1(x′, x′′) = δ(x− x′′) (3.20)

i.e. A−1(x, x′) can be interpreted as the Green function of the operator A(x, x′). The notation
Dv(x) is used to denote the measure of the functional integral. Although the constant of
proportionality, (2π)N left out of Eq. (3.19) is formally divergent in the thermodynamic limit
N → ∞, it does not effect averages that are obtained from derivatives of such integrals. For
example, for Gaussian distributed functions, Eq. (3.14) has the generalisation

〈v(x)v(x′)〉 = A−1(x, x′)

Accordingly, Eq. (3.16) assumes the form

〈v(x1)v(x2) . . . v(x2n)〉 =
∑

all possible
pairings of{x1,...x2n}

A−1(xk1 , xk2) . . . A
−1(xk2n−1 , xk2n

) (3.21)

The generalization of the other Gaussian averaging formulae discussed above should be obvious.

To make sense of Eq. (3.19) one must interpret the meaning of the determinant, detA.

When the variables entering the Gaussian integral were discrete, the latter simply represented

the determinant of the (real symmetric) matrix. In the present case, one must interpret A as

an Hermitian operator having an infinite set of eigenvalues. The determinant simply represents

the product over this infinite set (see, e.g., section 3.3.1). This completes our discussion of the

method of Gaussian integration. Although, in the following section, we will employ only a few

of the integral identities above, later we will have occasion to draw on the properties of the ‘field

averages’.

——————————————–

Before turning to specific applications of the Feynman path integral, let us stay with
the general structure of the formalism and identify two fundamental connections of the
path integral to classical point mechanics and classical and quantum statistical mechanics.

3.2.1 Path Integral and Statistical Mechanics

The path integral reveals a connection between quantum mechanics and classical (and
quantum) statistical mechanics whose importance to all areas of field theory and statis-
tical physics can hardly be exaggerated. To reveal this link, let us for a moment forget
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about quantum mechanics and consider, by way of an example, a perfectly classical, one–
dimensional continuum model describing a ‘flexible string’. We assume that our string
is held under constant tension, and confined to a ‘gutter–like potential’ (as shown in
Fig. 3.2). For simplicity, we also assume that the mass density of the string is pretty high,
so that its fluctuations are ‘asymptotically slow’ (the kinetic contribution to its energy
is negligible). Transverse fluctuations of the string are then penalised by its line tension,
and by the external potential.

x

u

V(u)

Figure 3.2: A string held under tension and confined to a potential well V .

Assuming that the transverse displacement of the string u(x) is small, the potential
energy stored in the string separates into two parts. The first arises form the line tension
stored in the string, and the second comes from the external potential. Starting with the
former, a transverse fluctuation of a line segment of length dx by an amount du, leads to
a potential energy of magnitude δVtension = σ[(dx2 +du2)1/2−−dx] ≃ σdx(∂xu)

2/2, where
σ denotes the tension. Integrated over the length of the string, one obtains Vtension[∂xu] ≡∫
δVtension = 1

2

∫ L
0
dx σ(∂xu(x))

2. The second contribution arising from the external po-

tential is given by Vexternal[u] ≡
∫ L
0
dx V (u(x)). Adding the two contributions, we find that

the total energy of the string is given by V = Vtension + Vexternal =
∫ L
0
dx[σ

2
(∂xu)

2 + V (u)].
According to the general prinicples of statistical mechanics, the equilibrium properties

of a system are encoded in the partition function Z = tr
[
e−βV

]
, where ‘tr’ denotes a

summation over all possible configurations of the system and V is the total potential
energy functional. Applied to the present case, tr →

∫
Du, where

∫
Du stands for the

functional integration over all configurations of the string u(x), x ∈ [0, L]. Thus, the
partition function of the string is given by

Z =

∫
Du exp

[
−β
∫ L

0

dx
(σ

2
(∂xu)

2 + V (u)
)]

. (3.22)

A comparison of this result with Eq. (3.8) shows that the partition function of the classical
system coincides with the quantum mechanical amplitude

Z =

∫
dq 〈q|eiŜ[q]/~|q〉

∣∣∣
t=−iL

evaluated at an imaginary ‘time’ t→ −iτ ≡ −iL, where Ĥ = p̂2/2σ+V (q), and Planck’s
constant is identified with the ‘temperature’, ~ = 1/β. (Here we have assumed that our
string is subject to periodic boundary conditions.)
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To see this explicitly, let us assume that we had reason to consider quantum propa-
gation in imaginary time, i.e. e−itĤ/~ → e−τĤ/~, or t → −iτ . Assuming convergence (i.e.
positivity of the eigenvalues of Ĥ), a construction scheme perfectly analogous to the one
outlined in section 3.1 would have led to a path integral formula of the structure (3.8).
Formally, the only differece would be that (a) the Lagrangian would be integrated along
the imaginary time axis t′ → −iτ ′ ∈ [0,−iτ ] and (b) that there would be a change of
the sign of the kinetic energy term, viz. (∂t′q)

2 → −(∂τ ′q)
2. After a suitable exchange of

variables, τ → L, ~ → 1/β, the coincidence of the resulting expression with the partition
function (3.22) is clear.

The connection between quantum mechanics and classical statistical mechanics out-
lined above generalises to higher dimensions: There are close analogies between quan-
tum field theories in d dimensions and classical statistical mechanics in d + 1. (The
equality of the path integral above with the one–dimensional statistical model is merely
the d = 0 version of this connection.) In fact, this connection turned out to be one of the
major driving forces behind the success of path integral techniques in modern field the-
ory/statistical mechanics. It offered, for the first time, a possibility to draw connections
between systems which had seemed unrelated.

However, the concept of imaginary times not only provides a bridge between quantum
and classical statistical mechanics, but also plays a role within a purely quantum me-
chanical context. Consider the quantum partition function of a single particle quantum
mechanical system,

Z = tr[e−βĤ ] =

∫
dq 〈q|e−βĤ |q〉

The partition function can be interpreted as a trace over the transition amplitude 〈q|e−iĤt/~|q〉
evaluated at an imaginary time t = −i~β. Thus, real time dynamics and quantum sta-
tistical mechanics can be treated on the same footing, provided that we allow for the
appearance of imaginary times.

Later we will see that the concept of imaginary or even generalized complex times
plays an important role in all of field theory. There is even some nomenclature regarding
imaginary times. The transformation t → −iτ is denoted as a Wick rotation (alluding
to the fact that a multiplication with the imaginary unit can be interpreted as a π/2–
rotation in the complex plane). Imaginary time representations of Lagrangian actions are
termed Euclidean, whereas the real time forms are called Minkowski11 actions.

⊲ Info. The origin of this terminology can be understood by considering the structure of

the action of, say, the phonon model (1.2). Forgetting for a moment about the magnitude of the

11

Hermann Minkowski 1864–
1909: A pure mathematician
credited with the development of
a four–dimensional treatment of
electrodynamics and, separately,
the geometry of numbers.
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coupling constants, we see that the action has the bilinear structure ∼ xµg
µνxν , where µ = 0, 1,

the vector xµ = ∂µφ and the diagonal matrix g = diag(−1, 1) is the two dimensional version

of a Minkowski metric. (In three spatial dimensions, g would take the form of the standard

Minkowski metric of special relativity.) Wick rotating time, the −1 in the metric changes sign

and g becomes a positive definite Euclidean metric. The nature of this transformation motivates

the notation above.

——————————————–

Once one has grown accustomed to the idea that the interpretation of time as an
imaginary quantity can be useful, yet more general concepts can be conceived. For exam-
ple, one may contemplate quantum propagation along temporal contours that are neither
purely real nor purely imaginary but rather are generally complex. Indeed, it has turned
out that path integrals with curvelinear integration contours in the complex ‘time plane’
find numerous applications in statistical and quantum field theory.

3.2.2 Semiclassics from the Path Integral

In deriving the two path integral representations (3.6) and (3.8) no approximations were
made. Yet the vast majority of quantum mechanical problems cannot be solved in closed
form, and it would be hoping for too much to expect that within the path integral ap-
proach this situation would be any different. In fact no more than the path integrals
of problems with a quadratic Hamiltonian — corresponding to the quantum mechanical
harmonic oscillator and generalisations thereof — can be carried out in closed form. Yet
what counts more than the (rare) availability of exact solutions is the flexibility with
which approximation schemes can be developed. As for the path integral formulation, it
is particularly strong in cases where semiclassical limits of quantum theories are
explored. Here, by ‘semiclassical’, we mean the limit ~ → 0, i.e. the case where the the-
ory is expected to be largely governed by classical structures with quantum fluctuations
superimposed.

To see more formally how classical structures enter the path integral approach, let
us explore Eqs. (3.6) and (3.8) in the limit of small ~. In this case the path integrals
are dominated by path configurations with stationary action. (Non–stationary contri-
butions to the integral imply massive phase fluctuations which largely average to zero.)
Now, since the exponents of the two path integrals (3.6) and (3.8) involve the classical
action functionals in their Hamiltonian respectively Lagrangian form, the extremal path
configurations are simply the solutions of the classical equations of motion, viz.

Hamiltonian : δS[x] = 0 ⇒ dtx = {H(x), x} ≡ ∂pH∂qx− ∂qH∂px,

Lagrangian : δS[q] = 0 ⇒ (dt∂q̇ − ∂q)L(q, q̇) = 0 . (3.23)

These equations are to be solved subject to the boundary conditions q(0) = qI and
q(t) = qF . (Note that these boundary conditions do not uniquely specify a solution, i.e.
in general there are many solutions to the equations (3.23). As an exercise, one may try
to invent examples!)

Now the very fact that the stationary phase configurations are classical does not imply
that quantum mechanics has disappeared completely. As with saddle–point approxima-
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tions in general, it is not just the saddle–point itself that matters but also the fluctua-
tions around it. At least it is necessary to integrate out Gaussian (quadratic) fluctuations
around the point of stationary phase. In the case of the path integral, fluctuations of
the action around the stationary phase configurations involve non–classical (in that they
do not solve the classical equations of motion) trajectories through phase or coordinate
space. Before exploring how this mechanism works in detail, let us consider the stationary
phase analysis of functional integrals in general.

⊲ Info. Stationary Phase Approximation: Consider a general functional integral∫
Dxe−F [x] where Dx = limN→∞

∏N
n=1 dxn represents a functional measure resulting from

taking the continuum limit of some finite dimensional integration space, and the ‘action’ F [x]
may be an arbitrary complex functional of x (leading to convergence of the integral). The
function resulting from taking the limit of infinitely many discretisation points, {xn} is denoted
by x : t 7→ x(t) (where t plays the role of the formerly discrete index n). Evaluating the integral
above within a stationary phase approximation amounts to performing the following steps:

1. Firstly, find the ‘points’ of stationary phase, i.e. configurations x̄ qualified by the condition
of vanishing functional derivative,

DxF = 0 ⇔ ∀t :
δF [x]

δx(t)

∣∣∣∣
x=x̄

= 0.

Although there may, in principle, be one or many solutions, for clarity, we first discuss
the case in which the stationary phase configuration x̄ is unique.

2. Secondly, Taylor expand the functional to second order around x̄, viz.

F [x] = F [x̄+ y] = F [x̄] +
1

2

∫
dt

∫
dt′y(t′)A(t, t′)y(t) + . . . (3.24)

where A(t, t′) = δ2F [x]
δx(t)δx(t′)

∣∣∣
x=x̄

denotes the second functional derivative. Due to the sta-

tionarity of x̄, one may note that no first order contribution can appear.

3. Thirdly, check that the operator Â ≡ {A(t, t′)} is positive definite. If it is not, there is a
problem — the integration over the Gaussian fluctuations y below diverges. (In practice,
where the analysis is rooted in a physical context, such eventualities arise only rarely.
In situations were problems do occur, the resolution can usually be found in a judicious
rotation of the integration contour.) For positive definite Â, however, the functional

integral over y can be performed after which one obtains
∫
Dx e−F [x] ≃ e−F [x̄] det( Â2π )−1/2,

(cf. the discussion of Gaussian integrals above and, in particular, Eq. (3.19)).

4. Finally, if there are many stationary phase configurations, x̄i, the individual contributions
have to be added:

∫
Dx e−F [x] ≃

∑

i

e−F [x̄i] det

(
Âi
2π

)−1/2

. (3.25)

Eq. (3.25) represents the most general form of the stationary phase evaluation of a (real) func-
tional integral.
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⊲ Exercise. Applied to the Gamma function, Γ(z + 1) =
∫∞
0 dxxze−x, with z complex,

show that the stationary phase approximation is consistent with Stirling’s approximation, viz.

Γ(s+ 1) =
√

2πses(ln s−1).

——————————————–

q
q

I

q
Fα h

1/2

t

q

q(t)

Figure 3.3: Quantum fluctuations around a classical path in coordinate space (here we
assume a set of two–dimensional coordinates). Non–classical paths q fluctuating around
a classical solution qcl typically extend a distance O(h1/2). All paths begin and end at qI
and qF , respectively.

Applied to the Lagrangian form of the Feynman path integral, this program can be
implemented directly. In this case, the extremal field configuration q̄(t) is identified as
the classical solution associated with the Lagrangian, i.e. q̄(t) ≡ qcl(t). Defining r(t) =
q(t) − qcl(t) as the deviation of a general path, q(t), from a nearby classical path, qcl(t)
(see Fig. 3.3), and assuming for simplicity that there exists only one classical solution
connecting qI with qF in a time t, a stationary phase analysis obtains

〈qF |e−iĤt/~|qI〉 ≃ eiS[qcl]/~

∫

r(0)=r(t)=0

Dr exp

[
i

2~

∫ t

0

dt′dt′′r(t′)
δ2S[q]

δq(t′)δq(t′′)

∣∣∣∣
q=qcl

r(t′′)

]
(3.26)

as the Gaussian approximation to the path integral (cf. Eq. (3.24)). For free Lagrangians
of the form, L(q, q̇) = mq̇2/2−V (q), the second functional derivative of the action can be
straightforwardly computed by means of the rules of functional differentiation formulated
in chapter 1. Alternatively, one can obtain this result by simply expanding the action as
a Taylor series in the deviation r(t). As a result, one obtains (exercise)

1

2

∫ t

0

dt

∫
dt′r(t)

δ2S[q]

δq(t)δq(t′)

∣∣∣∣
q=qcl

r(t′) = −1

2

∫
dt r(t)

[
m∂2

t + V ′′(qcl(t))
]
r(t) , (3.27)

where V ′′(qcl(t)) ≡ ∂2
qV (q)|q=qcl represents the ordinary (second) derivative of the potential

function evaluated at qcl(t). Thus, the Gaussian integration over r yields the square root
of the determinant of the operator m∂2

t + V ′′(qcl(t)) — interpreted as an operator acting
in the space of functions r(t) with boundary conditions r(0) = r(t) = 0. (Note that, as
we are dealing with a differential operator, the issue of boundary conditions is crucial.)
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⊲ Info. More generally, Gaussian integration over fluctuations around the stationary phase
configuration obtains the formal expression

〈qF |e−iĤt/~|qI〉 ≃ det

(
i

2π~

∂2S[qcl]

∂qI∂qF

)1/2

e
i
~
S[qcl] , (3.28)

as the final result for the transition amplitude evaluated in the semiclassical approxima-
tion. (In cases where there is more than one classical solution, the individual contributions have
to be added.) To derive this expression, one shows that the operator controlling the quadratic
action (3.27) fulfills some differential relations which can be, again, related back to the classical
action. While a detailed formulation of this calculation (see, for example, Ref. [20], page 94) is
beyond the scope of the present text, the heuristic interpretation of the result is straightforward:

According to the rules of quantum mechanics p(qF , qI , t) = |〈qF |e−iĤt/~|qI〉|2 defines the
probability density for a particle injected at coordinate qI to arrive at coordinate qF after a time
t. In the semiclassical approximation, the probability density assumes the form p(qF , qI , t) =

|det( 1
2π~

∂2S[qcl]
∂qI∂qF

)|. We can gain some physical insight into this expression from the following
consideration: For a fixed inital coordinate qI , the final coordinate qF (qI , pI) becomes a function
of the initial momentum pI . The classical probability density p(qI , qF ) can then be related to
the probabilty density p̃(qI , pI) for a particle to leave from the initial phase space coordinate
(qI , pI) according to

p(qI , qF )dqIdqF = p(qI , qF )

∣∣∣∣det

(
∂qF
∂pI

)∣∣∣∣ dqIdpI = p̃(qI , pI)dqIdpI .

Now, when we say that our particle actually left at the phase space coordinate (qI , pI), p̃ becomes
singular at (qI , pI) while being zero everywhere else. In quantum mechanics, however, all we
can say is that our particle was initially confined to a Planck cell centered around (qI , pI):
p̃(qI , pI) = 1/(2π~)d. We thus conclude that p(qI , qF ) = |det(∂pI/∂qF )|~−d. Finally, noticing
that pI = −∂qIS we arrive at the result of the semiclassical analysis above.

 p 

 q 

 q  q 

 p 

 I  F  I  I 
(q ,p )

 I 

Figure 3.4: Trajectory in two-dimensional phase space: For fixed initial coordinate qI ,
the final coordinate qF (qI , pI) becomes a function of the initial momentum. In quantum
mechanics, the Planck cell ~d (indicated by the rectangle) limits the accuracy at which
the initial coordinate can be set.

In deriving (3.28) we have restricted ourselves to the consideration of quadratic fluctuations

around the classical paths — the essence of the semiclassical approximation. Under what condi-

tions is this approximation justified? Unfortunately there is no rigorous and generally applicable
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answer to this question: For finite ~, the quality of the approximation depends largely on the

sensitivity of the action to path variations. Whether or not the approximation is legitimate is

a question that has to be judged from case to case. However, the asymptotic stability of the

semiclassical approximation in the limit ~ → 0, can be deduced simply from power counting.

From the structure of Eq. (3.28) it is clear that the typical magnitude of fluctuations r(t) scales

as r ∼ (~/δ2qS)1/2, where δ2qS is a symbolic shorthand for the functional variation of the ac-

tion. (Variations larger than that lead to phase fluctuations > 2π, thereby being negligible.)

Non–Gaussian contributions to the action would have the structure ∼ ~
−1rnδnq S, n > 2. For a

typical r, this is of the order ∼ δnq S/(δ
2
qS)n/2~

n/2−1. Since the S-dependent factors are classical

(~–independent), these contributions scale to zero as ~ → 0.

——————————————–

This concludes the conceptual part of the chapter. Before turning to the discussion
of specific applications of the path integral, let us first briefly recapitulate the main steps
taken in its construction:

3.2.3 Construction Recipe of the Path Integral

Consider a general quantum transition amplitude 〈ψ|e−iĤt/~|ψ′〉, where t may be real,
purely imaginary or generally complex. To construct a functional integral representation
of the amplitude:

1. Partition the time interval into N ≫ 1 steps,

e−iĤt/~ =
[
e−iĤ∆t/~

]N
, ∆t = t/N .

2. Regroup the operator content appearing in the expansion of each factor e−iĤ∆t/~

according to the relation

e−iĤ∆t/~ = 1 + ∆t
∑

mn

cmnÂ
mB̂n +O(∆t2) ,

where the eigenstates |a〉, |b〉 of Â, B̂ are known and the coefficients cmn are c–
numbers. (In the quantum mechanical application above Â = p̂, B̂ = q̂.) This
‘normal ordering’ procedure emphasizes that many distinct quantum mechanical
systems are associated with the same classical action.

3. Insert resolutions of identity according to

e−iĤ∆t/~ =
∑

a,b

|a〉〈a|(1 + ∆t
∑

mn

cmnÂ
mB̂n +O(∆t2))|b〉〈b|

=
∑

a,b

|a〉〈a|e−iH(a,b)∆t/~|b〉〈b| +O(∆t2) ,

where H(a, b) is the Hamiltonian evaluated at the eigenvalues of Â and B̂.
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4. Regroup terms in the exponent: Due to the ‘mismatch’ of the eigenstates at neigh-
bouring time slices n and n + 1, not only the Hamiltonians H(a, b), but also sums
over differences of eigenvalues appear (cf. the last term in the action (3.5)).

5. Take the continuum limit.

3.3 Applications of the Feynman Path Integral

Having introduced the general machinery of path integration we now turn to the discus-
sion of specific applications. Our starting point will be an investigation of a low energy
quantum particle confined to a single potential well, and the phenomenon of tunneling
in a double well. With the latter, we will become acquainted with instanton techniques
and the role of topology in field theory. The ideas developed in this section will be gener-
alised further to the investigation of quantum mechanical decay and quantum dissipation.
Finally, we will turn our attention to the development of the path integral for quantum
mechanical spin and, as a case study, explore the semiclassical trace formulae for quantum
chaos.

The simplest example of a quantum mechanical problem is that of a free particle

(Ĥ = p̂2/2m). Yet, within the framework of the path integral, this example, which can
be dealt with straightforwardly by elementary means, is far from trivial: the Gaussian
functional integral engaged in its construction involves divergences which must be regu-
larised by rediscretising the path integral. Nevertheless, its knowledge will be useful as a
means to normalise the path integral in the applications below. Therefore, we leave it as
an exercise to show12

Gfree(qF , qI ; t) ≡ 〈qF |e−
i
~

p̂2

2m
t|qI〉Θ(t) =

( m

2πi~t

)1/2

e
i
~

m
2t

(qF−qI)2Θ(t) (3.29)

where the Heaviside Θ–function reflects causality.13

⊲ Exercise. Derive Eq. (3.29) by the standard methodology of quantum mechanics. Hint:

insert a resolution of identity and perform a Gaussian integral.

⊲ Exercise. Using the path integral, obtain a perturbative expansion for the scattering

amplitude 〈p′|U(t → ∞, t′ → −∞)|p〉 of a free particle from a short–ranged central potential

V (r). In particular, show that the first order term in the expansion recovers the Born scattering

amplitude −i~e−i(t−t′)E(p)/~δ(E(p) − E(p′)) 〈p′|V |p〉.

12Compare this result to the solution of a classical diffusion equation.
13Motivated by its interpretation as a Green function, in the following we will refer to the quantum

transition probability amplitude by the symbol G (as opposed to U used above).
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V

q

ω

Figure 3.5: Solid: Potential well. Dashed: Quadratic fit approximating the potential
shape close to the minimum.

3.3.1 Quantum Particle in a Well

As a first application of the path integral, let us consider the problem of a quantum
particle in a one–dimensional potential well (see the figure). The discussion of this
example will illustrate how the semiclassical evaluation scheme discussed above works
in practice. For simplicity we assume the potential to be symmetric, V (q) = V (−q)
with V (0) = 0. The quantity we wish to compute is the probability amplitude that
a particle injected at q = 0 returns after a time t, i.e. with Ĥ = p̂2/2m + V (q̂),

G(0, 0; t) ≡ 〈qF = 0|e−iĤt/~|qI = 0〉Θ(t). Drawing on our previous discussion, the path
integral representation of the transition amplitude is given by

G(0, 0; t) =

∫

q(t)=q(0)=0

Dq exp

[
i

~

∫ t

0

dt′L(q, q̇)

]
,

where L = mq̇2/2 − V (q) represents the corresponding Lagrangian.

Now, for a generic potential V (q), the path integral can not be evaluated exactly.
Instead, we wish to invoke the semiclassical analysis outlined conceptually above. Ac-
cordingly, we must first find solutions to the classical equation of motion. Minimising
the action with respect to variations of q(t), one obtains the Euler–Lagrange equation
of motion mq̈ = −V ′(q) where, as usual, we have used the shorthand V ′(q) ≡ ∂qV (q).
According to the Feynman path integral, this equation must be solved subject to the
boundary conditions q(t) = q(0) = 0. One solution is obvious, viz. qcl(t) = 0. Assuming
that this is in fact the only solution,14 we obtain (cf. Eqs. (3.26) and (3.27))

G(0, 0; t) ≃
∫

r(0)=r(t)=0

Dr exp

[
− i

~

∫ t

0

dt′r(t′)
m

2

(
∂2
t′ + ω2

)
r(t′)

]
,

14In general, this assumption is wrong: For smooth potentials V (q), a Taylor expansion of V at small q
obtains the harmonic oscillator potential, V (q) = V0 +mω2q2/2+ · · ·. For times t that are commensurate
with π/ω, one has periodic solutions, qcl(t) ∝ sin(ωt) that start out from the origin at time t = 0 and
revisit it at just the right time t. In the next section we will see why the restriction to just the trivial
solution was nonetheless legitimate (for arbitrary times t).
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where, by definition, mω2 ≡ V ′′(0) is the second derivative of the potential at the ori-
gin.15 Note that, in this case, the contribution to the action from the stationary phase
field configuration vanishes S[qcl] = 0. Following the discussion of section 3.2, Gaussian
functional integration over r then leads to the semiclassical expansion

G(0, 0; t) ≃ Jdet
(
−m(∂2

t + ω2)/2
)−1/2

, (3.30)

where the prefactor J absorbs various constant prefactors.
Operator determinants are usually most conveniently obtained by presenting them as

a product over eigenvalues. In the present case, the eigenvalues ǫn are determined by the
equation

−m
2

(
∂2
t + ω2

)
rn = ǫnrn ,

which is to be solved subject to the boundary condition rn(t) = rn(0) = 0. A complete
set of solutions to this equation is given by16 rn(t

′) = sin(nπt′/t), n = 1, 2, . . ., with
eigenvalues ǫn = m[(nπ/t)2 − ω2]/2. Applied to the determinant, one therefore finds

det
(
−m(∂2

t + ω2)/2
)−1/2

=
∞∏

n=1

[
m

2

((nπ
t

)2

− ω2

)]−1/2

.

To interpret this result, one must first make sense of the infinite product (which even
seems divergent for times commensurate with π/ω!). Moreover the value of the constant
J has yet to be properly determined. To resolve these difficulties, one may exploit the
fact that (a) we do know the transition amplitude (3.29) of the free particle system, and
(b) the latter coincides with the transition amplitude G in the special case where the
potential V ≡ 0. In other words, had we computed Gfree via the path integral, we would
have obtained the same constant J and, more importantly, an infinite product like the
one above, but with ω = 0. This allows the transition amplitude to be regularised as

G(0, 0; t) ≡ G(0, 0; t)

Gfree(0, 0; t)
Gfree(0, 0; t) =

∞∏

n=1

[
1 −

(
ωt

nπ

)2
]−1/2 ( m

2πi~t

)1/2

Θ(t) .

Then, with the help of the mathematical identity
∏∞

n=1[1 − (x/nπ)2]−1 = x/ sin x, one
finally arrives at the result

G(0, 0; t) ≃
√

mω

2πi~ sin(ωt)
Θ(t) . (3.31)

In the case of the harmonic oscillator, the expansion of the potential necessarily trun-
cates at quadratic order and, in this case, the expression above is exact. (For a more
ranging discussion of the path integral for the quantum harmonic oscillator system, see

15Those who are uncomfortable with functional differentiation can arrive at the same expression simply
by substituting q(t) = qcl(t) + r(t) into the action and expanding in r.

16To find the solutions of this equation, recall the structure of the Schrödinger equation of a particle
in a one–dimensional box of width L = t!
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problem 3.5.) For a general potential, the semiclassical approximation effectively involves
the replacement of V (q) by a quadratic potential with the same curvature. The calcula-
tion above also illustrates how coordinate space fluctuations around a completely static
solution may reinstate the zero–point fluctuations characteristic of quantum mechanical
bound states.

q

V

Figure 3.6: Solid: Double well potential. Dashed: Inverted potential

3.3.2 Double Well Potential: Tunneling and Instantons

As a second application of the path integral let us now consider the motion of a particle
in a double well potential (see the figure). Our aim will be to estimate the quantum
probability amplitude for a particle to either stay at the bottom of one of the local
minima or to go from one minimum to the other. In doing so, it is understood that
the energy range accessible to the particle (i.e. ∆E ∼ ~/t) is well below the potential
barrier height, i.e. quantum mechanical transfer between minima is by tunnelling. Here,
in contrast to the single well system, it is far from clear what kind of classical stationary
phase solutions may serve as a basis for a description of quantum tunnelling; there appear
to be no classical paths connecting the two minima. Of course one may think of particles
‘rolling’ over the potential hill. Yet, these are singular and, by assumption, energetically
inaccessible.

The key to resolving these difficulties is an observation, already made above, that the
time argument appearing in the path integral should be considered as a general complex
quantity that can (according to convenience) be sent to any value in the complex plane.
In the present case, a Wick rotation to imaginary times will reveal a stationary point
of the action. At the end of the calculation, the real time amplitudes we seek can be
straightforwardly obtained by analytic continuation.

To be specific, let us consider the imaginary time transition amplitudes

GE(a,±a; τ) ≡ 〈±a| exp
[
−τ

~
Ĥ
]
|a〉 = G(−a,∓a; τ) (3.32)
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where the coordinates ±a coincide with the two minima of the potential. From (3.32) the
real time amplitudes G(a,±a; t) can be recovered by the analytic continuation τ → it.
According to section 3.2.1, the Euclidean path integral formulation of the transition
amplitudes is given by

G(a,±a; τ) =

∫

q(0)=±a,q(τ)=a

Dq exp

[
−1

~

∫ τ

0

dτ ′
(m

2
q̇2 + V (q)

)]
(3.33)

where the function q now depends on imaginary time. From (3.33) we obtain the station-
ary phase (or saddle–point) equations

−mq̈ + V ′(q) = 0. (3.34)

From this result, one can infer that, as a consequence of the Wick rotation, there is an
effective inversion of the potential, V → −V (shown dashed in the figure above). The
crucial point is that, within the inverted potential landscape, the barrier has become a
sink, i.e. within the new formulation, there are classical solutions connecting the two
points, ±a. More precisely, there are three different types of classical solutions which
fulfill the condition to be at coordinates ±a at times 0 and/or τ : (a) The solution wherein
the particle rests permanently at a,17 (b) the corresponding solution staying at −a and,
most importantly, (c) the solution in which the particle leaves its initial position at ±a,
accelerates through the minimum at 0 and eventually reaches the final position ∓a at time
τ . In computing the transition amplitudes, all three types of paths have to be taken into
account. As for (a) and (b), by computing quantum fluctuations around these solutions,
one can recover the physics of the zero–point motion described in section 3.3.1 for each
well individually (exercise: convince yourself that this is true!). Now let us see what
happens if the paths connecting the two coordinates are added to this picture.

The Instanton Gas

The classical solution of the Euclidean equation of motion that connects the two potential
maxima is called an instanton solution while a solution traversing the same path but
in the opposite direction (‘−a → a’ ❀ ‘a → −a’) is called an anti–instanton. The name
‘instanton’ was invented by ’t Hooft18 with the idea that these objects are very similar in

17Note that the potential inversion answers a question that arose above, i.e. whether or not the classical
solution staying at the bottom of the single well was actually the only one to be considered. As with the
double well, we could have treated the single well within an imaginary time representation, whereupon the
well would have become a hill. Clearly there is just one classical solution being at two different times at
the top of the hill, viz. the solution that stays there forever. By formulating the semiclassical expansion
around that path, we would have obtained (3.31) with t→ −iτ , which, upon analytic continuation, would
have led back to the real time result.

18

Gerardus ’t Hooft
1946– : 1999 Nobel
Laureate in Physics for
elucidating the quantum
structure of electroweak
interactions in physics.
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their mathematical structure to ‘solitons’, particle–like solutions of classical field theories.
However, unlike solitons, they are structures in time (albeit Euclidean time); thus the
‘instant–’. As another etymographic remark, note that the syllable ‘–on’ in ‘instanton’
hints to an interpretation of these states as a kind of particle. The background is that, as
a function of the time coordinate, instantons are almost everywhere constant save for a
short region of variation (see below). Alluding to the interpretation of time as something
akin to a spatial dimension, these states can be interpreted as a well–localised excitation
or, according to standard field theoretical practice, a particle.19

To proceed, we must first compute the classical action associated with a single instan-
ton solution. Multiplying (3.34) by q̇cl, integrating over time (i.e. performing the first
integral of the equation of motion), and using the fact that at qcl = ±a, q̇cl = 0 and V = 0,
one finds that

m

2
q̇2
cl = V (qcl). (3.35)

With this result, one obtains the instanton action

Sinst =

∫ τ

0

dτ ′

mq̇2
cl︷ ︸︸ ︷(m

2
q̇2
cl + V (qcl)

)
=

∫
dτ ′

dqcl
dτ ′

(mq̇cl) =

∫ a

−a

dq (2mV (q))1/2. (3.36)

Notice that Sinst is determined solely by the functional profile of the potential V (i.e. does
not depend on the structure of the solution qcl).

Secondly, let us explore the structure of the instanton as a function of time. Defining
the second derivative of the potential at ±a by V ′′(±a) = mω2, Eq. (3.35) implies that
for large times (where the particle is close to the right maximum), q̇cl = −ω(qcl−a) which
integrates to qcl(τ)

τ→∞−→ a − e−τω. Thus the temporal extension of the instanton is set
by the oscillator frequencies of the local potential minima (the maxima of the inverted
potential) and, in cases where tunnelling takes place on time scales much larger than that,
can be regarded as short (see Fig. 3.7).

The confinement of the instanton configuration to a narrow interval of time has an
important implication — there must exist approximate solutions of the stationary equa-
tion involving further anti–instanton/instanton pairs (physically, the particle repeatedly
bouncing to and fro in the inverted potential). According to the general philosophy of
the saddle–point scheme, the path integral is obtained by summing over all solutions of
the saddle–point equations and hence over all instanton configurations. The summation
over multi–instanton configurations — termed the ‘instanton gas’ — is substantially
simplified by the fact that individual instantons have short temporal support (events of
overlapping configurations are rare) and that not too many instantons can be accommo-
dated in a finite time interval (the instanton gas is dilute). The actual density is dictated
by the competition between the configurational ‘entropy’ (favouring high density), and

19In addition to the original literature, the importance that has been attached to the instanton method
has inspired a variety of excellent and pedagogical reviews of the field. Of these, the following are highly
recommended: A. M. Polyakov, Quark confinement and topology of gauge theories, Nucl. Phys. B120,
429 (1977); S. Coleman, in Aspects of symmetry — selected Erice lectures, (Cambridge University Press
1985) chapter 7.
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-a

-a aa

t

ω–1

Figure 3.7: Single instanton configuration.

the ‘energetics’, the exponential weight implied by the action (favouring low density) —
see the estimate below.

In practice, multi–instanton configurations imply a transition amplitude

G(a,±a; τ) ≃
∑

n even / odd

Kn

∫ τ

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτnAn(τ1, . . . , τn), (3.37)

where An denotes the amplitude associated with n instantons, and we have taken into
account the fact that in order to connect a with ±a, the number of instantons must be
even/odd. The n instanton bounces contributing to each An can take place at arbitrary
times τi ∈ [0, τ ], i = 1, . . . , n and all these possibilities have to be added (i.e. integrated).
Here K denotes a (dimensionful) constant absorbing the temporal dimension [time]n intro-
duced by the time integrations, and An(τ1, . . . , τn) is the transition amplitude, evaluated
within the semiclassical approximation around a configuration of n instanton bounces at
times 0 ≤ τ1 < τ2 < . . . < τn ≤ τ (see Fig. 3.8). In the following, we will first focus on
the transition amplitude An which controls the exponential dependence of the tunneling
amplitude returning later to consider the prefactor K.

τ 1 ττ5 τ4 τ 3 τ 2

q

–a

a

Figure 3.8: Dilute instanton gas configuration.

According to the general semiclassical principle, each amplitude An = An,cl. × An,qu.

factorises into two parts, a classical contribution An,cl. accounting for the action of the
instanton configuration; and a quantum contribution An,qu. resulting from quadratic fluc-
tuations around the classical path. Focusing initially on An,cl. we note that, at intermedi-
ate times, τi ≪ τ ′ ≪ τi+1, where the particle rests on top of either of the maxima at ±a,
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no action accumulates (cf. the previous section). However, each instanton bounce has a
finite action Sinst (see Eq. (3.36)) and these contributions add up to give the full classical
action,

An,cl.(τ1, . . . , τn) = e−nSinst/~, (3.38)

which is independent of the time coordinates τi. (The individual instantons ‘don’t know
of each other’; their action is independent of their relative position.)

As for the quantum factor An,qu., there are, in principle, two contributions. Whilst
the particle rests on either of the hills (the straight segments in Fig. 3.8), quadratic
fluctuations around the classical (i.e. spatially constant) configuration play the same
role as the quantum fluctuations considered in the previous section, the only difference
being that we are working in a Wick rotated picture. There it was found that quantum
fluctuations around a classical configuration which stays for a (real) time t at the bottom
of the well, result in a factor

√
1/ sin(ωt) (the remaining constants being absorbed into

the prefactor Kn). Rotating to imaginary times, t→ −iτ , one can infer that the quantum
fluctuation accumulated during the stationary time τi+1 − τi is given by

√
1

sin(−iω(τi+1 − τi))
∼ e−ω(τi+1−τi)/2,

where we have used the fact that, for the dilute configuration, the typical separation times
between bounces are much larger than the inverse of the characteristic oscillator scales of
each of the minima. (It takes the particle much longer to tunnel through a high barrier
than to oscillate in either of the wells of the real potential.)

Now, in principle, there are also fluctuations around the ‘bouncing’ segments of the
path. However, due to the fact that a bounce takes a time of O(ω−1) ≪ ∆τ , where ∆τ
represents the typical time between bounces, one can neglect these contributions (which
is to say that they can be absorbed into the prefactor K without explicit calculation).
Within this approximation, setting τ0 ≡ 0, τn+1 ≡ τ , the overall quantum fluctuation
correction is given by

An,qu.(τ1, . . . , τn) =
n∏

i=0

e−ω(τi+1−τi)/2 = e−ωτ/2, (3.39)

again independent of the particular spacial configuration {τi}. Combining (3.38) and
(3.39), one finds that

G(a,±a; τ) ≃
∞∑

n even / odd

Kne−nSinst/~e−ωτ/2

τn/n!
︷ ︸︸ ︷∫ τ

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn

= e−ωτ/2
∑

n even / odd

1

n!

(
τKe−Sinst/~

)n
. (3.40)

Finally, performing the summation, one obtains the transition amplitude

G(a,±a; τ) ≃ Ce−ωτ/2
{

cosh
(
τKe−Sinst./~

)

sinh
(
τKe−Sinst./~

) (3.41)
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where C is some factor that depends in a non–exponential way on the transition time.
Before we turn to a discussion of the physical content of this result, let us check the

self–consistency of our central working hypothesis — the diluteness of the instanton gas.
To this end, consider the representation of G in terms of the partial amplitudes (3.40). To
determine the typical number of instantons contributing to the sum, one may make use of
the fact that, for a general sum

∑
n cn of positive quantities cn > 0, the ‘typical’ value of

the summation index can be estimated as 〈n〉 ≡∑n cnn/
∑

n cn. With the abbreviation
X ≡ τKe−Sinst/~, the application of this estimate to our current sum yields

〈n〉 ≡
∑

n nX
n/n!∑

nX
n/n!

= X,

where we have used the fact that, as long as 〈n〉 ≫ 1, the even/odd distinction in the sum
is irrelevant. Thus, we can infer that the average instanton density, 〈n〉/τ = Ke−Sinst/~ is
both exponentially small in the instanton action Sinst, and independent of τ confirming
the validity of our diluteness assumptions above.

q

q

V

S

A

ψ

Figure 3.9: Quantum states in the double well: Dashed: Harmonic oscillator states. Solid:
Exact eigenstates.

Finally, let us discuss how the form of the transition amplitude (3.41) can be under-
stood in physical terms. To this end, let us reconsider the basic structure of the problem
we are dealing with (see Fig. 3.9). While there is no coupling across the barrier, the
Hamiltonian has two independent, oscillator–like sets of low lying eigenstates sitting in
the two local minima. Allowing for a weak inter–barrier coupling, the oscillator ground
states (like all higher states) split into a doublet of a symmetric and an antisymmetric
eigenstate, |S〉 and |A〉 with energies ǫA and ǫS, respectively. Focusing on the low energy
sector formed by the ground state doublet, we can express the transition amplitudes (3.32)
as

G(a,±a; τ) ≃ 〈a|
(
|S〉e−ǫSτ/~〈S| + |A〉e−ǫAτ/~〈A|

)
| ± a〉.
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Setting ǫA/S = ~ω/2 ± ∆ǫ/2, where ∆ǫ represents the tunnel-splitting, the symmetry
properties |〈a|S〉|2 = |〈−a|S〉|2 = C/2 and 〈a|A〉〈A| − a〉 = −|〈a|A〉|2 = −C/2 imply that

G(a,±a; τ) ≃ C

2

(
e−(~ω−∆ǫ)τ/2~ ± e−(~ω+∆ǫ)τ/2~

)
= Ce−ωτ/2

{
cosh(∆ǫτ/~)
sinh(∆ǫτ/~)

.

Comparing this expression with Eq. (3.41) the interpretation of the instanton calculation
becomes clear: At long times, the transition amplitude engages the two lowest states —
the symmetric and anti–symmetric combination of the two oscillator ground states. The
energy splitting ∆ǫ accommodates the energy shift due to the tunneling between the two
wells. Remarkably, the effect of tunneling was obtained from a purely classical picture
(formulated in imaginary time!). The instanton calculation also produced a prediction for
the tunnel splitting of the energies, viz.

∆ǫ = ~K exp(−Sinst/~),

which, up to the prefactor, agrees with the result of a WKB–type analysis of the tunnel
process.

Before leaving this section, two general remarks on instantons are in order:

⊲ In hindsight, was the approximation scheme used above consistent? In particular,
terms at second order in ~ were neglected, while terms non–perturbative in ~ (the
instanton) were kept. Yet, the former typically give rise to a larger correction to the
energy than the latter. However, the large perturbative shift effects the energies of
the symmetric and antisymmetric state equally. The instanton contribution gives
the leading correction to the splitting of the levels. It is the latter which is likely to
be of more physical significance.

⊲ Secondly, it may — legitimately — appear as though the development of the ma-
chinery above was a bit of an “overkill” for describing a simple tunnelling process.
As a matter of fact, the basic result (3.41) could have been obtained in a simpler
way by more elementary means (using, for example, the WKB method). Why then
did we discuss instantons at such length? One reason is that, even within a purely
quantum mechanical framework, the instanton formulation of tunnelling is much
stronger than WKB. The latter represents, by and large, an uncontrolled approxi-
mation. In general it is hard to tell whether WKB results are accurate or not. In
contrast, the instanton approximation to the path integral is controlled by a number
of well–defined expansion parameters. For example, by going beyond the semiclas-
sical approximation and/or softening the diluteness assumption, the calculation of
the transition amplitudes can, in principle, be driven to arbitrary accuracy.

⊲ A second, and for our purposes, more important motivation is that instanton tech-
niques are of crucial importance within higher dimensional field theories (here we
regard the path integral formulation of quantum mechanics as a 0 space +1 time
= 1–dimensional field theory). The reason is that instantons are intrinsically non–
perturbative objects, which is to say that instanton solutions to stationary phase
equations describe a type of physics that cannot be obtained by a perturbative ex-
pansion around a non–instanton sector of the theory. (For example, the bouncing
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orbits in the example above cannot be incorporated into the analysis by doing a kind
of perturbative expansion around a trivial orbit.) This non–perturbative nature of
instantons can be understood by topological reasoning:

Relatedly, one of the features of the instanton analysis above was that the number
of instantons involved was a stable quantity; ‘stable’ in the sense that by including
perturbative fluctuations around the n instanton sector, say, one does not connect
with the n+ 2 sector. Although no rigorous proof of this statement has been given,
it should be heuristically clear: a trajectory involving n bounces between the hills of
the inverted potential cannot be smoothly connected with one of a different number.
Suppose for instance we would forcably attempt to interpolate between two paths
with different bounce numbers: Inevitably, some of the intermediate configurations
would be charged with actions that are far apart from any stationary phase like
value. Thus, the different instanton sectors are separated by an energetic barrier
that cannot be penetrated by smooth interpolation and, in this sense, they are
topologically distinct.

⊲ Info. Fluctuation determinant: Our analysis above provided a method to extract the
tunneling rate between the quantum wells to a level of exponential accuracy. However, in some
applications, it is useful to compute the exponential prefactor K. Although such a computation
follows the general principles outlined above and implemented explicitly for the single well, there
are some idiosyncracies in the tunneling system which warrant discussion.

According to the general principles outlined in section 3.2.2, integrating over Gaussian fluctu-
ations around the saddle–point field configurations, the contribution to the transition amplitude
from the n–instanton section is given by

Gn = Jdet
(
−m∂2

τ + V ′′(qcl,n)
)
e−nSinst./~

where qcl,n(τ) represents an n–instanton configuration and J the normalisation. Now, in the
zero instanton sector, the evaluation of the functional determinant recovers the familiar harmonic
oscillator result, G(0, 0; τ) = (mω/π~)1/2 exp[−ωτ/2]. Let us now consider the one instanton
sector of the theory. To evaluate the functional determinant, one must consider the spectrum
of the operator −m∂2

τ + V ′′(qcl,1). Differentiating the defining equation for qcl,1 (3.34), one may
confirm that

(
−m∂2

τ + V ′′(qcl,1)
)
∂τqcl,1 = 0,

i.e. the function ∂τqcl,1 presents a zero mode of the operator!. Physically, the origin of the
zero mode is elucidated by noting that a translation of the instanton along the time axis,
qcl,1(τ) → qcl,1(τ + δτ) should leave the action approximately invariant. However, for small δτ ,
qcl,1(τ+δτ) ≃ qcl,1(τ)+δτ∂τ qcl,1, i.e. to first order, the addition of the increment function ∂τqcl,1
leaves the action invariant, and δτ is a ‘zero mode coordinate’.

With this interpretation, it becomes clear how to repair the formula for the fluctuation deter-
minant. While the Gaussian integral over fluctuations is controlled for the non–zero eigenvalues,
its execution for the zero mode must be rethought. Indeed, by integrating over the coodinate
of the instanton, viz.

∫ τ
0 dτ0 = τ , one finds that the contribution to the transition amplitude in

the one instanton sector is given by

Jτ

√
Sinst.

2π~
det′

[
−m∂2

τ + V ′′(qcl,1)
]−1/2

e−Sinst./~
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where the prime indicates the exclusion of the zero mode from the determinant, and the factor√
Sinst./2π~ reflects the Jacobian associated with the change to a new set of integration variables

which contains the zero mode coordinate τ as one of its elements.20 To fix the, as yet, undeter-
mined coupling constant J , we normalize by the fluctuation determinant of the (imaginary time)
harmonic oscillator, i.e. we use the fact that (cf. section 3.3.1), for the harmonic oscillator, the

return amplitude evaluates to G(0, 0, τ) = J det(m(−∂2
τ + ω2)/2)−1/2 =

(
mω
π~

)1/2
e−ωτ/2, where

the first/second representation is the imaginary time variant of Eq. (3.30)/Eq.(3.31). Using this
result, and noting that the zero mode analysis above generalizes to the n–instanton sector, we
find that the pre–exponential constant K used in our analysis of the double well problem above
affords the explicit representation

K = ω

√
Sinst.

2π~

[
mω2det′

[
−m∂2

τ + V ′′(qcl,1)
]

det [−m∂2
τ +mω2]

]−1/2

.

Naturally, the instanton determinant depends sensitively on the particular nature of the potential
V (q). For the quartic potential V (q) = mω2(x2 − a2)2/8a2, it may be confirmed that the

mω2det′
[
−m∂2

τ + V ′′(qcl,1)
]

det [−m∂2
τ +mω2]

=
1

12
,

while Sinst =
√

2/3mωa2. For further details of the calculation, we refer to, e.g., Zinn-Justin.

——————————————–

Escape From a Metastable Minimum: “Bounces”

The instanton gas approximation for the double well system can be easily adapted to
explore the problem of quantum mechanical tunneling from a metastable state such as
that presented by an unstable nucleus. In particular, suppose one wishes to estimate
the “survival probability” of a particle captured in a metastable minimum of a one–
dimensional potential such as that shown in Fig. 3.10.

q q

V

q

q–V

m

q
m

τ

Figure 3.10: Effective potential showing a metastable minimum together with the inverted
potential and a sketch of a bounce solution. To obtain the tunnelling rate it is necessary
to sum over a dilute gas of bounce trajectories.

According to the path integral scheme, the survival probability, defined by the proba-
bility amplitude to remain at the potential minimum qm, i.e. the propagator G(qm, qm; t),

20For an explicit calculation of this Jacobian see, e.g., J. Zinn-Justin, Quantum Field Theory and

Critical Phenomena (Oxford University Press, 1993).
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can be evaluated by making use of the Euclidean time formulation of the Feynman path
integral. As with the double well, in the Euclidean time formalism, the dominant contri-
bution to the transition probability arises from the classical path minimising the action
corresponding to the inverted potential (see Fig. 3.10). However, in contrast to the double
well potential, the classical solution takes the form of a ‘bounce’ (i.e. the particle spends
only a short time away from the potential minimum — there is only one metastable
minimum of the potential). As with the double well, one can expect mutliple bounce
trajectories to present a significant contribution. Summing over all bounce trajectories
(note that in this case we have an exponential series — no even/odd parity effect), one
obtains the survival probability

G(qm, qm; τ) = Ce−ωτ/2 exp
[
τKe−Sbounce/~

]
.

Applying an analytic continuation to real time, one findsG(θm, θm; t) = Ce−iωt/2 exp[−Γ
2
t],

where the decay rate is given by Γ/2 = |K|e−Sbounce/~. (Note that on physical grounds we
can see that K must be imaginary.21

⊲ Exercise. Consider a heavy nucleus having a finite rate of α-decay. The nuclear forces

can be considered very short-ranged so that the rate of α particle emission is controlled by

tunneling under a Coulomb barrier. Taking the effective potential to be spherically symmetric

with a deep minimum core of radius r0 beyond which it decays as U(r) = 2(Z − 1)e2/r where Z

is the nuclear charge, find the temperature of the nuclei above which α-decay will be thermally

assisted if the energy of the emitted particles is E0. Estimate the mean energy of the α particles

as a function of temperature.

⊲ Exercise. A uniform electric field E is applied perpendicular to the surface of a metal

with work function W . Assuming that the electrons in the metal describe a Fermi gas of density

n, with exponential accuracy, find the tunneling current at zero temperature (“cold emission”).

Show that, effectively, only electrons with energy near the Fermi level are tunneling. With the

same accuracy, find the current at finite temperature (“hot emission”). What is the most prob-

able energy of tunneling electrons as function of temperature?

3.3.3 †Tunneling of Quantum Fields: ‘Fate of the False Vacuum’

⊲ Additional Example: Hitherto we have focussed on applications of the Feynman path
integral to the quantum mechanics of isolated point–like particles. In this setting, the merit of
the path integral scheme over, say, standard perturbative methods or the ‘WKB’ approach is
perhaps not compelling. Therefore, by way of motivation, let us here present an example which
builds upon the structures elucidated above and which illustrates the power of the path integral
method.

21In fact, a more careful analysis shows that this estimate of the decay rate is too large by a factor of
2 (for further details see, e.g., Coleman, Aspects of Symmetry: Selected Erice Lectures, CUP.)
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Figure 3.11: Snapshot of a field configuration φ(x, t = const.) in a potential landscape
with two nearly degenerate minima. For further discussion, see the text.

To this end, let us consider a theory involving a continuous classical field which can adopt
two homogeneous equilibrium states with different energy densities: To be concrete, one may
consider an harmonic chain confined to one or other minimum of an asymmetric quasi one–
dimensional ‘gutter–like’ double well potential (see Fig. 3.11). When quantised, the state of
higher energy density becomes unstable through barrier penetration — it is said to be a “false
vacuum”.22 Specifically, drawing on our discussion of the harmonic chain in chapter 1, let us
consider a quantum system specified by the Hamiltonian density

Ĥ =
π̂2

2m
+
ksa

2

2
(∂xφ̂)2 + V (φ̂), (3.42)

where [π̂(x), φ̂(x′)] = −i~δ(x−x′). Here we have included a potential V (φ) which, in the present
case, assumes the form of a double well. The inclusion of a weak bias −fφ into V (φ) identifies a
stable and a metastable potential minimum. Previously, we have seen that, in the absence of the
confining potential, the quantum string exhibits low–energy collective wave–like excitations —
phonons. In the confining potential, these harmonic fluctuations are rendered massive. However,
drawing on the quantum mechanical principles established in the single–particle system, one
might assume that the string tunnels freely between the two potential minima. To explore the
capacity of the system to tunnel, let us suppose that, at some time t = 0, the system adopts a
field configuration in which the string is located in the (metastable) minimum of the potential
at, say, φ = −a. What is the probability that the entire string of length L will tunnel across
the barrier into the potential minimum at φ = a in a time t?

⊲ Info. The tunneling of fields between nearly degenerate ground state plays a role in
numerous physical contexts. By way of example, consider a superheated liquid. In this
context, the ‘false’ vacuum is the liquid state, and the true one the gaseous phase. The role of
the field is taken by the local density distribution in the liquid. Thermodynamic fluctuations
trigger the continuous appearance of vapor bubbles in the liquid. For bubbles of too small a

22 For a detailed discussion of the history and ramifications of this idea, we refer on the original
insightful paper by Sidney Coleman, Fate of the false vacuum: semiclassical theory, Phys. Rev. D 15,
2929 (1977). Indeed, many of the ideas developed in this work were anticipated in an earlier analysis of
metastability in the context of classical field theories by J. S. Langer, Theory of the condensation point,
Ann. Phys. (N.Y.) 41, 108 (1967).
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diameter, the gain in volume energy is outweighed by the surface energy cost — the bubble will
collapse. However, for bubbles beyond a certain critical size, the energy balance is positive. The
bubble will grow and, eventually, swallow the entire mass density of the system; the liquid has
vaporised or, more formally, the density field has tunneled23 from the false ground state into the
true one.

More speculative (but also potentially more damaging) manifestations of the phenomenon
have been suggested in the context of cosmology:22 What if the big bang released our universe
not into its true vacuum configuration but into a state separated by a huge barrier from a more
favourable sector of the energy landscape. In this case, everything would depend on the tunneling
rate: ‘If this time scale is of the order of milliseconds, the universe is still hot when the false

vacuum decays... if this time is on the order of years, the decay will lead to a sort of secondary

big bang with interesting cosmological consequences. If this time is of the order of 10 9 years, we

have occasion for anxiety.’ (S. Coleman, ibid.).
——————————————–

Previously, for the point–particle system, we have seen that the transition probability be-
tween the minima of the double well is most easily accessed by exploring the classical field
configurations of the Euclidean time action. In the present case, anticipating to some extent our
discussion of the quantum field integral in the next chapter, the Euclidean time action associated
with the Hamiltonian density (3.42) assumes the form24

S[φ] =

∫ T

0
dτ

∫ L

0
dx

[
m

2
(∂τφ)2 +

ksa
2

2
(∂xφ)2 + V (φ)

]
,

where the time integral runs over the interval [0, T = it]. Here, for simplicity, let us assume
that the string obeys periodic boundary conditions in space, viz. φ(x + L, τ) ≡ φ(x, τ). To
estimate the tunneling amplitude, we will explore the survival probability of the metastable
state imposing the boundary conditions φ(x, τ = 0) = φ(x, τ = T ) = −a on the path integral.
Once again, when the potential barrier is high, and the time T is long, one may assume that the
path integral is dominated by the saddle–point field configuration of the Euclidean action. In
this case, varying the action with respect to the field φ(x, τ), one obtains the classical equation
of motion

m∂2
τφ+ ksa

2∂2
xφ = ∂φV (φ) ,

which must be solved subject to the boundary conditions above.

Now, motivated by our consideration of the point–particle problem, one might seek a solution
in which the string tunnels as a single rigid entity without ‘flexing’. However, it is evident from
the spatial translational invariance of the system that the instanton action would scale with the
system size L. In the infinite system L → ∞, such a trajectory would therefore not contribute
significantly to the tunneling amplitude. Instead, one must consider a different type of field
configurataion in which the transfer of the chain is by degree: Elements of the string cross the

23At this point, readers should no longer be confused regarding the mentioning of ‘tunneling’ in the
context of a classical system: Within the framework of the path integral, the classical partition sum maps
onto the path integral of a fictitious quantum system. It is the tunneling of the latter we have in mind.

24Those readers who wish to develop a more rigorous formulation of the path integral for the string
may either turn to the discussion of the field integral in the next chapter or, alternatively, may satisfy
themselves of the validity of the Euclidean action by (re–)discretisating the harmonic chain, presenting
the transition amplitude as a series of Feynman path integrals for each element of the string and, finally,
taking the continuum limit.
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Figure 3.12: On the tunneling between two nearly degenerate vacuum states. As time
moves on, a one–dimensional ‘world sheet’ sweeps through a circular structure in Eu-
clidean space time. This results in the inflation of a ‘bubble’ of the true vacuum state in
real space.

barrier in a consecutive sequence as two outwardly propagating ‘domain walls’ (see the figure
where the emergence of such a double–kink configuration is shown as a function of space and
time; notice the spherical shape of the resulting space–time droplet — a consequence of the
rotational symmetry of the rescaled problem). Such a field configuration can be motivated
from symmetry considerations by noting that, after rescaling x 7→ vsx (where vs =

√
ksa2/m

denotes the classical sound wave velocity), the saddle–point equation assumes the isotropic form
m∂2φ = ∂φV (φ), where ∂2 = ∂2

τ + ∂2
x. Then, setting r =

√
x2 + (τ − T/2)2, and sending

(T,L) → ∞, the space–time rotational symmetry suggests a solution of the form φ = φ(r)
where φ(r) obeys the radial diffusion equation

∂2
rφ+

1

r
∂rφ = ∂φV ,

with the boundary condition limr→∞ φ(r) = −a. This equation describes the one–dimensional
motion of a particle in a potential −V and subject to a strange “friction force” −r−1∂rφ whose
strength is inversely proportional to ‘time’ r.

To understand the profile of the non–trivial bounce solution of the problem, suppose that at
time r = 0 the particle has been released at rest at a position slightly to the left of the (inverted)
potential maximum at a. After rolling through the potential minimum it will climb the potential
hill at −a. Now, the initial position may be fine tuned such that the viscous damping of the
particle compensates for the excess potential energy (which would otherwise make the particle
overshoot and disappear to infinity): there exists a solution where the particle starts close to
φ = a and eventually winds up at φ = −a, in accord with the imposed boundary conditions. In
general, the analytical solution for the bounce depends sensitively on the form of the confining
potential. However, while we assume that the well asymmetry imposed by external potential
−fφ is small, the radial equation may be considerably simplified. In this limit, one may invoke a
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“thin-wall” approximation in which one assumes that the bounce configuration is described by a
domain wall of thickness ∆r, at a radius r0 ≫ ∆r separating an inner region where φ(r < r0) = a
from the outer region where φ(r > r0) = −a. In this case, and to lowest order in an expansion
in f , the action of the friction force is immaterial, i.e. we may set m∂2

rφ = ∂φV — the very
instanton equation formulated earlier for the point–particle system!

Then, when substituted back into S, one finds that the bounce (or kink–like) solution is
characterised by the Euclidean action

S = vs
[
2πr0Sinst. − πr20 2af

]

where Sinst. denotes the action of the instanton associated with the point–particle system (3.36),
and the last term accommodates the effect of the potential bias on the field configuration. Cru-
cially, one may note that the instanton contribution to the action scales with the circumference
of the domain wall in the space–time, while that of the potential bias scales with the area of the
domain. From this scaling dependence, it is evident that, however small is the external force
f , at large enough r0, the contribution of the second term will always outweigh the first and
the string will tunnel from the metastable minimum to the global minimum of the potential.
More precisely, the optimal size of domain is found by minimising the action with respect to r0.
In doing so, one finds that r0 = Sinst./2af . Then, when substituted back into the action, one
obtains the tunneling rate

Γ ∼ exp

[
−1

~

πvsS
2
inst.

2af

]
.

From this result, one can conclude that, in the absence of an external force f , the tunneling of
the string across the barrier is completely quenched ! In the zero temperature unbiased system,
the symmetry of the quantum Hamiltonian is broken: The ground state exhibits a two–fold
degeneracy in which the string is confined to one potential minimum or another.

The ramifications of the tunneling amplitude suppression can be traced to the statistical
mechanics of the corresponding classical system: As emphasized in section 3.2.1, any Euclidean
time path integral of a d–dimensional system can be identified with the statistical mechanics of
a classical system (d+ 1)–dimensional problem. In the double well system, the Euclidean time
action of the point–particle quantum system is isomorphic to the one–dimensional realisation of
the classical Ising ferromagnet, viz.

βHIsing =

∫ L

0
ddx

[
t

2
m2 + um4 +

K

2
(∇m)2

]
(3.43)

Translated into this context, the saddle–point (or mean–field) analysis suggests that the system

will exhibit a spontaneous symmetry breaking to an ordered phase (m 6= 0) when the parameter t

(the reduced temperature) becomes negative. However, drawing on our analysis of the quantum

point–particle system, in the thermodynamic limit, we see that fluctuations (non–perturbative

in temperature) associated with instanton field configurations of the Hamiltonian m(x) may

restore the symmetry of the system and destroy long–range order at any finite temperature 1/β.

Whether this happens or not depends on the competition between the energy cost of instanton

creation and the entropy gained by integrating over the instanton zero mode coordinates. It

turns out that in d = 1, the latter wins, i.e. the system is ‘disordered’ at any finite temperature.

In contrast, for d ≥ 2, the creation of instantons is too costly, i.e. the system will remain in its

energetically preferred ground state.
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3.3.4 †Tunneling in a Dissipative Environment

⊲ Additional Example: In the condensed matter context it is, of course, infeasible to
completely divorce a system from its environment. Indeed, in addition to the dephasing effect
of thermal fluctuations, the realization of quantum mechanical phenomena depends sensitively
on the strength and nature of the coupling to the external degrees of freedom. For example,
the tunneling of an atom from one interstitial site in a crystal to another is likely to be heavily
influenced by its coupling to the phonon degrees of freedom that characterise the crystal lattice.
By exchanging energy with the phonons, which act in the system as an external bath, a quantum
particle can loose its phase coherence and with it, its quantum mechanical character. Begin-
ning with the seminal work of Caldeira and Leggett,25 there have been numerous theoretical
investigations of the effect of an enviroment on the quantum mechanical properties of a system.
Such effects are particularly acute in systems where the quantum mechanical degree of freedom
is macroscopic such as the magnetic flux trapped in a superconducting quantum interference
device (SQUID). In the following, we will show that the Feynman path integral provides a nat-
ural (and almost unique) setting in which the effects of the environment on a microscopic or
macroscopic quantum mechanical degree of freedom can be explored.

Before we begin, let us note that the phenomenon of macroscopic quantum tunneling repre-
sents an extensive and still active area of research recently reinvigorated by the burgeoning field
of quantum computation. By contrast, our discussion here will be necessarily limited in scope,
targeting a particular illustrative application, and highlighting only the guiding principles. For
a more thorough and detailed discussion, we refer the reader to one of the many comprehensive
reviews.26

Caldeira–Leggett Model

Previously, we have discussed the ability of the Feynman path integral to describe quantum me-
chanical tunneling of a particle q across a potential barrier V (q). In the following, we will invoke
the path integral to explore the capacity for quantum mechanical tunneling when the particle is
coupled to degrees of freedom of an external environment. Following Calderia and Leggett’s orig-
inal formulation, let us represent the environment by a bath of N quantum harmonic oscillators
characterised by a set of frequencies {ωα},

Ĥbath[qα] =
N∑

α

[
p̂2
α

2mα
+
mα

2
ω2
αq

2
α

]
.

For simplicity, let us suppose that in the leading approximation, the coupling of the particle
to the degrees of freedom of the bath is linear such that Ĥc[q, qα] = −∑N

α fα[q]qα, where fα[q]
represents some function of the particle coordinate q. Expressed as a Feynman path integral,
the survival probability of a particle confined to a metastable minimum at a position q = a, and
coupled to an external environment, can then be expressed as (~ = 1)

〈a|e−iĤt/~|a〉 =

∫

q(0)=q(t)=a
Dq eiSpart.[q]

∫
Dqα e

iSbath[qα]+iSc[q,qα] ,

25A. O. Calderia and A. J. Leggett, Influence of Dissipation on Quantum Tunneling in Macroscopic

Systems, Phys. Rev. Lett. 46, 211 (1981).
26See, e.g., A. J. Leggett et al., Dynamics of the dissipative two–state system, Rev. Mod. Phys 48, 357

(1976), and the text by Weiss [?].
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where Ĥ = Ĥpart. + Ĥbath + Ĥc denotes the total Hamiltonian of the system,

Spart.[q] =

∫ t

0
dt
[m

2
q̇2 − V (q)

]
, Sbath[qα] =

∫ t

0
dt
∑

α

mα

2

[
q̇2α − ω2

αq
2
α

]
,

denote, respectively, the action of the particle and bath, while

Scoupling[q, qα] = −
∫ t

0
dt
∑

α

fα[q]qα −
∫
dt
∑

a

fα[q]
2

2maω2
a

,

represents their coupling.27 Here we assume that the functional integral over qα(t) is taken over
all field configurations of the bath while, as before, the path integral on q(t) is subject to the
boundary conditions q(0) = q(t) = a.

To reveal the effect of the bath on the capacity for tunneling of the particle, it is instructive
to integrate out fluctuations qα and thereby obtain an effective action for q. Fortunately, being
Gaussian in the coordinates qα, the integration can performed straightforwardly. Although not
crucial, since we are dealing with quantum mechanical tunneling, it is useful to transfer to the
Euclidean time representation. Taking the boundary conditions on the fields qα(τ) to be periodic
on the interval [0, T−1 ≡ β], it may be confirmed that the Gaussian functional integral over qα
induces a time non–local interaction of the particle (exercise) 〈a|e−iĤt/~|a〉 =

∫
Dq e−Seff [q] where

a constant of integration has been absorbed into the measure and

Seff [q] = Spart.[q] +
1

2T

∑

ωn,α

ω2
nfα[q(ωn)]fα[q(−ωn)]
mαω2

α(ω
2
α + ω2

n)
.

Here, the sum
∑

ωn
runs over the discrete set of Fourier frequencies ωn = 2πn/β with n inte-

ger.28 By integrating out the bath degrees of freedom, the particle action acquires an induced
contribution. To explore its effect on dissipation and tunneling, it is necessary to specialise our
discussion to a particular form of coupling.

In the particular case that the coupling to the bath is linear, viz. fα[q(τ)] = cαq(τ), the
effective action assumes the form (exercise)

Seff [q] = Spart.[q] − T

∫ β

0
dτ dτ ′K(τ − τ ′)q(τ)q(τ ′)

where K(τ) =
∫∞
0

dω
π J(ω)Dω(τ), J(ω) = π

2

∑
α

c2α
mαωα

δ(ω − ωα), and

Dω(τ) = −
∑

ωn

2ω2
n

ω(ω2 + ω2
n)
eiωnτ ,

resembles the Green function of a boson with energy ~ω. Physically, the non–locality of the
action is easily understood: By exchanging fluctuations with the external bath, a particle can

27The second term in the coupling action has been added to keep the effect of the environment min-
imally invasive (purely dissipative). If it would not be present, the coupling to the oscillator degrees of
freedom would effectively shift the extremum of the particle potential, i.e. change its potential landscape.
Exercise: substitute the solutions of the Euler–Lagrange equations δqα

S[q, qα] = 0 — computed for a
fixed realization of q — into the action to obtain the said shift.

28More preceisely, anticipating our discussion of the Matsubara frequency representation, we have
defined the Fourier decomposition on the Euclidean time interval T , viz. q(τ) =

∑
m qme

iωmτ , qm =

T
∫ β

0
dτq(τ)e−iωmτ , where ωm = 2πm/β with m integer.
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affect a self–interaction, retarded in time. Taken as a whole, the particle and the bath maintain
quantum phase coherence. However, when projected onto the particle degree of freedom, the
total energy of the system appears to fluctuate and the phase coherence of the particle transport
is diminished. To explore the properties of the dissipative action, it is helpful to separate the
non–local interaction according to the identity q(τ)q(τ ′) = [q2(τ) + q2(τ ′)]/2− [q(τ)− q(τ ′)]2/2.
The former squared contribution presents an innocuous renormalisation of the potential V (q)
and, applying equally to the classically allowed motion as well as quantum tunneling, presents
an unobservable perturbation. Therefore, we will suppose that its effect has been absorbed into
a redefinition of the particle potential V (q). By contrast, the remaining contribution is always
positive.

The particular form of the “spectral function” J(ω) may be obtained either from an a priori

knowledge of the microscopic interactions of the bath, or phenomenologically, it can be inferred
from the structure of the classical damped equations of motion. For example, for a system
subject to an “ohmic” dissipation (where, in real time, the classical equations of motion obtain
a dissipative term −ηq̇ with a “friction coefficient” η), one has J(ω) = η|ω| for all frequencies
smaller than some characteristic cut–off (at the scale of the inverse Drude relaxation time of the
environment). By contrast, for a defect in a three–dimensional crystal, interaction with acoustic
phonons present a frequency dependence of ω3 or ω5 depending on whether ω is below or above
the Debye frequency.

⊲ Info. Consider, for example, the coupling of a particle to a continuum of bosonic modes
whose spectral density J(ω) = η

8ω grows linearly with frequency. In this case,

K(ωn) = −ηω
2
n

8π

∫ ∞

0
dω

1

ω2 + ω2
n

= −η
4
|ωn|.

describes Ohmic dissipation of the particle. Fourier transforming this expression we obtain

K(τ) = −πTη
4

1

sin2(πTτ)

τ≪T−1

≃ − η

4πT

1

τ2
, (3.44)

i.e. a strongly time non–local ‘self–interaction’ of the particle.
——————————————–

Disssipative Quantum Tunneling

Returning to the particular problem at hand, previously, we have seen that the tunneling rate
of a particle from a metastable potential minimum can be inferred from the extremal field
configurations of the Euclidean action: the bounce trajectory. To explore the effect of the
dissipative coupling, it is necessary to understand how it revises the structure of the bounce
solution. Now, in general, the non–local character of the interaction inhibits access to an exact
solution of the classical equation of motion. In such cases, the effect of the dissipative coupling
can be explored perturbatively or with the assistance of the renormalisation group (see the
discussion in section ??). However, by tailoring our choice potential V (φ), we can gain some
intuition about the more general situation.

To this end, let us consider a particle of mass m confined in a metastable minimum by a
(semi–infinite) harmonic potential trap (see figure),

V (q) =

{
mω2

cq
2/2 0 < q ≤ a ,

−∞ q > a .
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V(q)

qa

Further, let us assume that the environment imparts an ohmic dissipation with a damping or
viscosity η. To keep our discussion general, let us consider the combined impact of dissipation
and temperature on the rate of tunneling from the potential trap. To do so, following Langer29 it
is natural to investigate the “quasi–equilibrium” quantum partition function Z of the combined
system. In this case, the tunneling rate appears as an imaginary contribution to the free energy
F = −T lnZ, viz. Γ = −2ImF .

Drawing on the path integral, the quantum partition function of the system can be presented
as a functional integral Z =

∫
q(β)=q(0)Dqe

−Seff where, as we have seen above, for ohmic coupling,
the Euclidean action assumes the form

Seff [q] =

∫ β

0
dτ
(m

2
q̇2 + V (q)

)
+

η

4π

∫ β

0
dτ dτ ′

(
q(τ) − q(τ ′)

τ − τ ′

)2

.

Once again, to estimate the tunneling rate, we will suppose that the barrier is high and the
temperature is low so that the path integral is dominated by stationary configurations of the
action. In this case, one may identify three distinct solutions: In the first place, the particle
may remain at q = 0 poised precariously on the maximum of the inverted harmonic potential.
Contributions from this solution and the associated harmonic fluctuations reproduce terms in
the quantum partition function associated with states of the closed harmonic potential trap.
Secondly, there exists a singular solution in which the particle remains at the minimum of
the inverted potential, i.e. perched on the potential barrier. The latter presents a negligible
contribution to the quantum partition function and can be neglected. Finally, there exists a
bounce solution in which the particle injected at a position q inside the well accelerates down
the inverted potential gradient, is reflected from the potential barrier, and returns to the initial
position q in a time β. While, in the limit β → ∞, the path integral singles out the boundary
condition q(0) = q(β) → 0, at finite β, the boundary condition will depart from 0 in a manner
that depends non–trivially on the temperature. It is this general bounce solution which governs
the decay rate.

Since, in the inverted potential, the classical bounce trajectory stays within the interval over
which the potential is quadratic, a variation of the Euclidean action with respect to q(τ) obtains
the classical equation of motion

−mq̈ +mω2
cq +

η

π

∫ β

0
dτ ′

q(τ) − q(τ ′)

(τ − τ ′)2
= Aδ(τ − β/2) ,

where the term on the right hand side of the equation imparts an impulse which changes dis-
continuously the velocity of the particle, while the coefficient A is chosen to ensure symmetry of
the bounce solution on the Euclidean time interval. Turning to the Fourier representation, the
solution of the saddle–point equation then assumes the form

qn = ATe−iωnβ/2g(ωn), g(ωn) ≡ [m(ω2
n + ω2

c ) + η|ωm|]−1. (3.45)

29J. S. Langer, Ben:...
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Imposing the condition that q(τ = β/2) = a, one finds that A = a/f where f ≡ T
∑

n g(ωn).
Finally, the action of the bounce is given by

Sbounce =
1

2T

∑

n

(m(ω2
n + ω2

c ) + η|ωm|)|qn|2 =
a2

2f
. (3.46)

(a) To make sense of these expressions, as a point of reference, let us first determine the zero
temperature tunneling rate in the absence of dissipation, viz. η → 0 and β → ∞.
In this case, the (Matsubara) frequency summation translates to the continuous integral,
f =

∫∞
−∞

dω
2π g(ω) = (2mωc)

−1. Using this result, the bounce action (3.46) takes the form

Sbounce = mωca
2. As one would expect, the tunnelling rate Γ ∼ e−Sbounce is controlled

by the ratio of the potential barrier height mω2
ca

2/2 to the attempt frequency ωc. Also
notice that the bounce trajectory is given by

q(τ) =
a

f

∫ ∞

−∞

dω

2π
eiω(τ−β/2)g(ω) = a e−ωc|τ−β/2| ,

i.e. as expected from our discussion in section 3.3.2, the particle spends only a time 1/ωc
in the under barrier region.

(b) Now, restricting attention to the zero temperature limit, let us consider the influence
of dissipation on the nature of the bounce solution and the capacity for tunneling.
Focussing on the limit in which the dynamics of the particle is overdamped, η ≫ mωc,

f =
∫∞
−∞ g(ω) ≃ 2

πη ln (η/mωc), which implies Sbounce = πηa2

4 ln[η/(mωc)]
. In particular, this

result shows that, in the limit η → ∞, the coupling of the particle to the ohmic bath
leads to an exponential suppression of the tunneling rate while only a weak dependence
on the jump frequency persists. Physically, this result is easy to rationalise: Under–barrier
tunneling is a feature of the quantum mechanical system. By transferring energy to and
from the external bath, the phase coherence of the particle is lost. At zero temperature,
the tunneling rate becomes suppressed and the particle confined.

(c) Let us now consider the influence of temperature on the tunneling rate when the
dissipative coupling is inactive η → 0. In this case, the discrete frequency summation
takes the form30 f = T

∑
n g(ωn) = coth(βωc/2)

2ωcm
. Using this result, one obtains the action

Sbounce = mωca
2 tanh(βωc/2). In the low temperature limit β → ∞, Sbounce = mωca

2

as discussed above. At high temperatures β → 0, as expected, one recovers a classical
activated dependence of the escape rate, viz. S ≃ βmω2

ca
2/2.

(d) Finally, let us briefly remark on the interplay of thermal activation with ohmic dis-

sipation. Applying the the Euler-Maclaurin formula
∑∞

m=0 f(m) =
∫∞
0 dx f(x) + f(0)

2 −
f ′(0)
12 + . . . to relate discrete sums over Matsubara frequencies to their zero temperature

integral limits, one finds that Sbounce(T )−Sbounce(T = 0) ∝ ηT 2. This shows that, in the
dissipative regime, an increase in temperature diminishes the tunneling rate with a scale
proportion to the damping.

This concludes our cursory discussion of the application of the Feynman path integral to

dissipative quantum tunneling. As mentioned above, our brief survey was able only to touch

upon the broad field of research. Those interested in learning more about the field of macroscopic

30For details on how to implement the discrete frequency summation, see the info block on p 137 below.
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quantum tunneling are referred to the wider literature. To close this chapter, we turn now to

our penultimate application of the path integral — quantum mechanical spin.

3.3.5 †Path Integral for Spin

⊲ Additional Example: The quantum mechanics of a spin 1/2–particle is a standard
example in introductory courses. Indeed, there is hardly any other system whose quantum
mechanics is as easy to formulate. Given that, it is perhaps surprising that for a long time the
spin problem defied all attempts to cast it in path integral form: Feynman, the architect of the
path integral, did not succeed in incorporating spin into the new formalism. It took several
decades to fill this gap (for a review of the early history up to 1980, see Schulman’s text [20]),
and a fully satisfactory formulation of the subject was obtained no earlier than 1988. (The
present exposition follows closely the lines of the review by Michael Stone, Supersymmetry and

the Quantum Mechanics of Spin, Nucl. Phys. B 314, 557 (1989).)

Why then is it so difficult to find a path integral of spin? In hindsight it turns out that the
spin path integral is in fact no more complex than any other path integral, it merely appears
to be a bit unfamiliar. The reason is that, on the one hand, the integrand of the path integral
is essentially the exponentiated classical action whilst, on the other, the classical mechanics
of spin is a subject that is not standard in introductory or even advanced courses. In other
words, the path integral approach must, by necessity, lead to an unusual object. The fact that
the classical mechanics of spin is hardly ever mentioned is not only related to the common view
that spin is something ‘fundamentally quantum’ but also to the fact that the mechanics of a
classical spin (see below) cannot be expressed within the standard formulation of Hamiltonian
mechanics, i.e. there is no formulation in terms of a set of globally defined coordinates and
equally many global momenta. It is therefore inevitable that one must resort to the (less widely
applied) symplectic formulation of Hamiltonian mechanics.31 However, as we will see below, the
classical mechanics of spin can nevertheless be quite easily understood physically.

Besides attempting to elucidate the connections beween quantum and classical mechanics of
spin, there is yet an other motivation for discussing the spin path integral. Pretending that we
have forgotten essential quantum mechanics, we will formulate the path integral ignoring the
fact that spin quantum numbers are half integer or integer. The quantization of spin will then
be derived in hindsight, by way of a geometric consideration. In other words, the path integral
formulation demonstrates how quantum mechanical results can be obtained by geometric rather
than standard algebraic reasoning. Finally, the path integral of spin will serve as a basic platform
on which our analysis of higher dimensional spin systems below will be based.

A reminder of finite–dimensional SU(2)–representation theory

In order to formulate the spin path integral, it is neccessary to recapitulate some facts regarding
the role of SU(2) in quantum mechanics. The special unitary group in two dimensions, SU(2),
is defined as SU(2) = {g ∈ Mat(2× 2,C)|g†g = 12, det g = 1}, where 12 is the two–dimensional
unit matrix. Counting independent components one finds that the group has three free real

31Within this formulation, the phase space is regarded as a differential manifold with a symplectic
structure (cf. Arnold’s text on classical mechanics [?]). (In the case of spin, this manifold is the two—
sphere S2.)
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parameters or, equivalently, that its Lie algebra, su(2), is three dimensional. As we have seen,
the basis vectors of the algebra — the group generators — Ŝi, i = x, y, z satisfy the closure
relation [Ŝi, Ŝj ] = iǫijkŜ

k, where ǫijk is the familiar fully antisymmetric tensor. An alternative,
and often more useful basis representation of su(2) is given by the spin raising and lowering
operators, Ŝ± = (Ŝx ± iŜy)/2. Again, as we have seen earlier, the algebra {Ŝ+, Ŝ−, Ŝz} is
defined by the commutation relations [Ŝ+, Ŝ−] = 2Ŝz, [Ŝz, Ŝ±] = ±2Ŝ±.

Each group element can be uniquely parametrized in terms of the exponentiated algebra.
For example, in the Euler angle representation,32 the group is represented as

SU(2) =
{
g(φ, θ, ψ) = e−iφŜ3e−iθŜ2e−iψŜ3

∣∣∣φ,ψ ∈ [0, 2π], θ ∈ [0, π]
}
.

The Hilbert space HS of a quantum spin represents an irreducible representation space of SU(2).
Within the spaces HS , SU(2) acts in terms of representation matrices (which will be denoted
by g) and the matrix representations of its generators Ŝi. The index S is the so–called weight
of the representation (physically: the total spin).33 Within each HS , there is a distinguished
state, a state of highest weight | ↑〉, which is defined as the (normalized) eigenstate of Ŝz with
maximum eigenvalue, S (physically: a spin state polarised in the 3–direction, often denoted as
|S, Sz = S〉, where m is the azimuthal quantum number). Owing to the irreducibility of the
representation, each (normalized) state of the Hilbert space HS can be obtained by applying
the Euler–angle–parameterized elements of the representation to the maximum weight state.

Being a compact group, SU(2) can be integrated over; i.e. it makes sense to define objects
like

∫
SU(2) dgf(g), where f is some function of g and dg is a realization of a group measure.34

Among the variety of measures that can be defined in principle, the (unique) Haar measure
plays a distinguished role. It has the convenient property that it is invariant under left and right
multiplication of g by fixed group elements; i.e.

∀h ∈ SU(2) :

∫
dgf(gh) =

∫
dgf(hg) =

∫
dgf(g),

where, for notational simplicity, we have omitted the subscript in
∫
SU(2).

Construction of the path integral

With this background, we are now in a position to formulate the Feynman path integral for
quantum mechanical spin. To be specific, let us consider a particle of spin S subject to the
Hamiltonian

Ĥ = B · Ŝ,
32

Leonhard Euler 1707–1783: Swiss mathematician and physicist, one of
the founders of pure mathematics. He not only made decisive and forma-
tive contributions to the subjects of geometry, calculus, mechanics, and
number theory but also developed methods for solving problems in obser-
vational astronomy and demonstrated useful applications of mathematics
in technology and public affairs.

33The index S is defined in terms of the eigenvalues of the Casimir operator (physically: the total

angular momentum operator) Ŝ2 ≡∑i Ŝ
2
i according to the relation ∀|s〉 ∈ HS : Ŝ2|s〉 = S(S + 1)|s〉.

34To define group measures in a mathematically clean way, one makes use of the fact that (as a Lie
group) SU(2) is a 3–dimensional differentiable manifold. Group measures can then be defined in terms
of the associated volume form (see the primer in differential geometry on page ?? below).
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where B is a magnetic field and Ŝ ≡ (Ŝ1, Ŝ2, Ŝ3) is a vector of spin operators in the spin–
S representation. Our aim is to calculate the imaginary time path integral representation of

the quantum partition function Z ≡ tr e−βĤ . In constructing the path integral we will follow
the general strategy outlined at the end of section 3.2.3, i.e. the first step is to represent

Z as Z = tr (e−ǫĤ)N , where ǫ = β/N . Next, we have — the most important step in the
construction — to insert a suitably chosen resolution of identity between each of the factors

e−ǫĤ . A representation that will lead us directly to the final form of the path integral is specified
by

id. = C

∫
dg |g〉〈g| (3.47)

where ‘id.’ represents the unit operator in HS,
∫
dg is a group integral over the Haar measure,

C is some constant and |g〉 ≡ g| ↑〉 is the state obtained by letting the representation matrix
g act on the maximum weight state | ↑〉 (cf. the summary of the SU(2) representation theory
above).

Of course it remains to be verified that the integral (3.47) is indeed proportional to the unit
operator. That this is so follows from Schur’s lemma which states that if, and only if, an
operator Â commutes with all representation matrices of an irreducible group representation (in
our case the g s acting in the Hilbert space HS), Â is either zero or proportional to the unit
matrix. That the group above integral fulfils the global commutativity criterion follows from
the properties of the Haar measure: ∀h ∈ SU(2),

h

∫
dg|g〉〈g| =

∫
dg|hg〉〈g| Haar

=

∫
dg|hh−1g〉〈h−1g| =

∫
dg|g〉〈g|h.

Thus,
∫
dg|g〉〈g| is, indeed, proportional to the unit operator. The proportionality constant

appearing in (3.47) will not be of any concern to us — apart from the fact that it is non–zero.35

Substituting the resolution of identity into the time–sliced partition function and making
use of the fact that

〈gi+1|e−ǫB·Ŝ|gi〉 ≃ 〈gi+1|gi〉 − ǫ〈gi+1|B · Ŝ|gi〉
〈gi|gi〉=1

= 1 − 〈gi|gi〉 + 〈gi+1|gi〉 − ǫ〈gi+1|B · Ŝ|gi〉
≃ exp

(
〈gi+1|gi〉 − 〈gi|gi〉 − ǫ〈gi+1|B · Ŝ|gi〉

)
,

one obtains

Z = lim
N→∞

∫

gN=g0

N∏

i=0

dgi exp

[
−ǫ

N−1∑

i=0

(
−〈gi+1|gi〉 − 〈gi|gi〉

ǫ
+ 〈gi+1|B · Ŝ|gi〉

)]
.

Taking the limit N → ∞, the latter can be cast in path integral form,

Z =

∫
Dg exp

[
−
∫ β

0
dτ
(
−〈∂τg|g〉 + 〈g|B · Ŝ|g〉

)]
(3.48)

where the HS–valued function |g(τ)〉 is the continuum limit of |gi〉. Eq. (3.48) is our final, albeit
somewhat over–compact, representation of the path integral. In order to give this expression
some physical interpretation, we need to examine more thoroughly the meaning of the states
|g〉.

35Actually, the constant C can be straightforwardly computed by taking the trace of (3.47) which leads
to C =(dimension of the representation space)/(volume of the group).
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In the literature, the states |g〉 expressed in the Euler–angle representation

|g̃(φ, θ, ψ)〉 ≡ e−iφŜ3e−iθŜ2e−iψŜ3 | ↑〉

are referred to as spin coherent states. Before discussing the origin of this terminology,
it is useful to explore the algebraic structure of these states. First, note that the maximum
weight state | ↑〉 is, by definition, an eigenstate of Ŝ3 with maximum eigenvalue S. Thus,

|g̃(φ, θ, ψ)〉 ≡ e−iφŜ3e−iθŜ2 | ↑〉e−iψS and the angle ψ enters the coherent state merely as a phase
or gauge factor. By contrast, the two remaining angles θ and φ act through true rotations.
Now, the angular variables φ ∈ [0, 2π[ and θ ∈ [0, π[ define a standard representation of the
two–sphere. In view of the fact that (up to normalization factors) the states |g(φ, θ, ψ)〉 cover
the entire Hilbert space HS , we are led to suspect that the latter bears structural similarity with
a sphere.36 To substantiate this view, let us compute the expectation values

ni ≡ 〈g̃(φ, θ, ψ)|Ŝi|g̃(φ, θ, ψ)〉, i = 1, 2, 3. (3.49)

To this end, we first derive an auxiliary identity which will spare us much of the trouble that
will arise in expanding the exponentials appearing in the definition of |g̃〉. Making use of the
general identity (i 6= j)

e−iφŜi Ŝje
iφŜi = e−iφ[Ŝi, ]Ŝj = Ŝj cosφ+ ǫijkŜk sinφ, (3.50)

where the last equality follows from the fact that cos x (sinx) contain x in even (odd) orders and
[Ŝj , ]2Ŝi = Ŝi, it is a straightforward matter to obtain (exercise) n = S(sin θ cosφ, sin θ sinφ, cos θ),
i.e. n is the product of S and a unit vector parameterized in terms of spherical coordinates.
This is the key to understanding the terminology ‘spin coherent states’: The states |g̃(φ, θ, ψ)〉
represent the closest approximation of a classical angular momentum one can form out of spin
operators (see the figure).

θ

ψ

Let us now see what happens if we employ the Euler angle representation in formulating the
path integral. A first and important observation is that the path integral is gauge invariant —
in the sense that it does not depend on the U(1)–phase, ψ. As for the B–dependent part of the
action, the gauge invariance is manifest: Eq. (3.49) implies that

SB[φ, θ] ≡
∫ β

0
dτ〈g̃|B · Ŝ|g̃〉 =

∫ β

0
dτ〈g|B · Ŝ|g〉 = S

∫ β

0
dτ n · B = SB

∫ β

0
dτ cos θ.

36There is a group theoretical identity behind this observation, viz. the isomorphism SU(2) ≃ S2×U(1),
where U(1) is the ‘gauge’ subgroup contained in SU(2).
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Here, we have introduced the gauge–independent part |g〉 of the state vector by setting |g̃〉 ≡
|g〉 exp(−iSψ) or,equivalently, |g(φ, θ)〉 ≡ e−iφŜ3e−iθŜ2 | ↑〉. Substituting this representation into
the first term of the action of (3.48), one obtains

Stop[φ, θ] ≡ −
∫ β

0
dτ〈∂τ g̃|g̃〉 = −

∫ β

0
dτ〈∂τe−iSψg|ge−iSψ〉

= −
∫ β

0
dτ (〈∂τg|g〉 − iS ∂τψ〈g|g〉) = −

∫ β

0
dτ〈∂τg|g〉, (3.51)

where the last equality holds because 〈g|g〉 = 1 is constant and ψ is periodic in β. As an
important intermediate result we have found that the path integral is overall gauge invariant or,
equivalently, that the path integral is one over paths living on the two–sphere (rather than the
entire group manifold SU(2)). This finding is reasuring in the sense that a degree of freedom
living on a sphere comes close to what one might intuitively expect to be the classical counterpart
of a quantum particle with conserved angular momentum.

Let us now proceed by exploring the action of the path integral. Using the auxiliary identity
(3.50) it is a straightforward matter to show that

Stop[φ, θ] = −
∫ β

0
dτ〈∂τg|g〉 = −iS

∫ β

0
dτ ∂τφ cos θ = iS

∫ β

0
dτ ∂τφ(1 − cos θ). (3.52)

Combining this with the B–dependent term discussed above, one obtains

S[θ, φ] = SB [φ, θ] + Stop[φ, θ] = S

∫ β

0
dτ [B cos θ + i(1 − cos θ)∂τφ] (3.53)

for the action of the path integral for spin.

⊲ Exercise. Derive the Euler–Lagrange equations asasociated with this action. Show that
they are equivalent to the Bloch equations i∂τn = B × n of a spin with expectation value
〈S〉 = Sn subject to a magnetic field. Here, n(φ, θ) ∈ S2 is the unit vector defined by the two
angles φ, θ.

Analysis of the action

To formulate the second term in the action (3.53) in a more suggestive way, we note that the
velocity of the point n moving on the unit sphere is given by ṅ = θ̇êθ + φ̇ sin θ êφ, where
(êr, êθ, êφ) form a spherical orthonormal system. We can thus rewrite Eq. (3.52) as

Stop[φ, θ] = iS

∫ β

0
dτ ṅ · A = iS

∮

γ
dn ·A, (3.54)

where

A =
1 − cos θ

sin θ
êφ. (3.55)

Notice that, in spite of its compact appearance, Eq. (3.54) does not represent a coordinate
invariant formulation of the action Stop. (The field A(φ, θ) explcitly depends on the coordinates
(φ, θ).) In fact, the action Stop cannot be expressed in a coordinate invariant manner, for reasons
deeply rooted in the topology of the two–sphere.
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A second observation is that (3.54) can be read as the (Euclidean time) action of a particle
of charge S moving under the influence of a vector potential A (cf., for example, Ref. [?].) Using
standard formulae of vector calculus (cf. Ref. [?]) one finds Bm ≡ ∇×A = Ser, i.e. our particle
moves in a radial magnetic field of constant strength S. Put differently, the particle moves in
the field of a magnetic ‘charge’ of strength 4π centered on the origin of the sphere.

⊲ Info. If you find this statement difficult to reconcile with the Maxwell equation ∇ · B =
0 ↔

∫
S B · dS for any closed surface S, notice that ∇ · B = ∇ · (∇ × A) = 0 holds only if

A is non–singular. However, the vector potential (3.55) is manifestly singular along the line
(r, θ = π) through the south pole of the sphere. The physical picture behind this singularity
is as follows: Imagine an infinitely thin solenoid running from r = ∞ through the south pole
of the sphere to its center. Assuming that the solenoid contains a magnetic flux 4π, the center
of the sphere becomes a source of magnetic flux, the so–called Dirac monopole. This picture
is consistent with the presence of a field B = er. It also explains the singularity of A along
the string. (Of course, the solenoidal construction does not lead to the prediction of a genuine
monopole potential: Somewhere, at r = ∞, our auxiliary magnetic coil has to end, and this is
where the flux lines emanating from the point r = 0 terminate.) The postulate of a flux line
at the singularity of A merely helps to reconcile the presence of a radial magnetic field with
the principles of electrodynamics. However, as far as our present discussion goes, this extra
structure is not essential, i.e. we may simply interpret r = 0 as the position of a magnetic
‘charge’.

——————————————–

To explore the consequences of this phenomenon, we apply Stokes’ theorem37

Stop[n] = iS

∮

γ
n ·A = iS

∮

Aγ,n

dS · (∇× A) = iS

∮

Aγ,n

dS · er = iSAγ,n. (3.56)

Here, Aγ,n is the domain on the two–sphere which (a) has the curve γ as its boundary, and (b)
contains the north pole (see the figure). The integral produces the area of this surface which we
again denote by Aγ,n. Curiously, the action Stop is but a measure of the area bounded by the
curve γ : τ 7→ n(τ). However, simple as it is, this result should raise some suspicion: By assigning
a designated role to the northern hemisphere of the sphere some symmetry breaking, not present
in the original problem, has been introduced. Indeed, we might have defined our action by
Stop[φ, θ] = iS

∮
γ dn · A′ where A′ = −1+cos θ

sin θ êφ = A − 2∇φ differs from A only by a gauge

transformation.38 The newly defined vector potential is non–singular in the southern hemisphere,
so that application of Stokes’ theorem leads to the conclusion Stop[n] = −iS

∫
Aγ,s

dS · Bm =

37

George Gabriel Stokes 1819–1903: As Lucasian Professor of
Mathematics at Cambridge Stokes etablished the science of hy-
drodynamics with his law of viscosity (1851), describing the ve-
locity of a small sphere through a viscous fluid. Furthermore, he
investigated the wave theory of light, named and explained the
phenomenon of fluorescence, and theorised an explanation of the
Fraunhofer lines in the solar spectrum.

38You may, with some justification, feel uneasy about the fact that φ is not a true ‘function’ on the
sphere (or, alternatively, about the fact that

∫
dn · ∇φ = φ(β) − φ(0) may be a non–vanishing multiple

of 2π). We will return to the discussion of this ambiguity shortly. (Notice that a similarly hazardous
manipulation is performed in the last equality of Eq. (3.52).)

Concepts in Theoretical Physics



3.3. APPLICATIONS OF THE FEYNMAN PATH INTEGRAL 109

−iSAγ,s. Here, Aγ,s is the area of a surface bounded by γ but covering the south pole of the
sphere. The absolute minus sign is due to the outward orientation of the surface Aγ,s.

γ

γ,nA

One has to concede that the result obtained for the action Stop depends on the chosen gauge
of the monopole vector potential! The difference between the northern and the southern variant
of our analysis is given by

iS

∫

Aγ,n

dS ·Bm + iS

∫

Aγ,s

dS ·Bm = iS

∫

S2

dS · er = 4πiS,

where we have made use of the fact that Aγ,n∪Aγ,s = S2 is the full sphere. At first sight, it looks
as if our analysis has led us to a gauge dependent, and therefore pathological result. Let’s recall,
however, that physical quantities are determined by the exponentiated action exp(iS[n]) and not
by the action itself. Now, S is either integer or half integer which implies the factor exp(4πiS) = 1
is irrelevant. In the operator representation of the theory, spin quantization follows from the
representation theory of the algebra su(2). It is a ‘non–local’ feature, in the sense that the action
of the spin operators on all eigenstates has to be considered to fix the dimensionality 2S + 1 of
HS . In hindsight, it is thus not too surprising that the same information is encapsulated in a
‘global’ condition (gauge invariance) imposed on the action of the path integral.

Summarizing, we have found that the classical dynamics of a spin is that of a massless point
particle on a sphere coupled to a monopole field Bm. We have seen that the vector potential of
the latter cannot be globally continuous on the full sphere. More generally, the phase space S2

cannot be represented in terms of a global system of ‘coordinates and momenta’ which places
it outside the scope of traditional treatments of classical mechanics. This probably explains the
failure of early attempts to describe the spin in terms of a path integral or, equivalently, in terms
of a Hamiltonian action.

In chapter ?? we will use the path action (3.53) as a building block for our construction of
the field theory of higher dimensional spin systems. However, before concluding this section, let
us make some more remarks on the curious properties of the monopole action Stop: Contrary
to all other Euclidean actions encountered thus far, the action (3.54) is imaginary. In fact,
it will stay imaginary upon Wick rotation τ → it back to real times. More generally, Stop is
invariant under the rescaling τ → cτ , and invariant even under arbitrary reparameterizations
τ → g(τ) ≡ τ ′. This invariance is a hallmark of a topological term. Loosely speaking (see
chapter ?? for a deeper discussion), a topological term is a contribution to the action of a
field theory that depends on the global geometry of a field configuration rather than on its
local structure. In contrast, ‘conventional’ operators in field theoretical actions measure the
energy cost of dynamical or spatial field fluctuations. In doing to they must relate to a specific
spatio–temporal reference frame, i.e. they cannot be invariant under reparamaterisation.

Summarizing our results, we have found that:
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1. The classical action of a spin is one of a massless particle (there is no standard kinetic
energy term in (3.48)) moving on a unit sphere. The particle carries a magnetic moment of
magnitude S. It is coupled to (a) a conventional magnetic field via its magnetic moment,
and (b) to a monopole field via its orbital motion. Note that we have come, finally, to a
position which hints at the difficulties plaguing attempts to formulate a classical mechanics
of spin. The vector potential of a monopole, A, cannot be globally defined on the entire
sphere. The underlying physical reason is that, by the very nature of the monopole (flux
going radially outwards everywhere), the associated vector potential must be singular at
one point of the surface.39 As a consequence, the classical phase space of the system, the
sphere, cannot be covered by a global choice of coordinate system. (Unlike most standard
problems of classical mechanics there is no system of globally defined ‘p’s and ‘q’s.) This
fact largely spoils a description within the standard — coordinate oriented — formulation
of Hamiltonian mechanics (cf. the discussion in the article by Stone).

2. Terms akin to the monopole contribution to the spin action appear quite frequently
within path integral formulations of systems with non–trivial topology (like the two–sphere
above). Depending on the particular context under consideration, one distinguishes be-
tween Wess–Zumino–Witten (WZW) terms,40 θ–terms, Chern–Simons terms
and a few other terms of topological origin. What makes these contributions generally
important is that the value taken by these terms depends only on the topology of a field
configuration but not on structural details.

As a final application of the path integral, we turn now to the consideration of problems in

which the dynamics of the classical system is, itself, non–trivial.

3.3.6 †Trace Formulae and Quantum Chaos

⊲ Additional Example: Introductory courses on classical mechanics usually convey the
impression that dynamical systems behave in a regular and, at least in principle, mathemati-
cally predictable way. However, experience shows that the majority of dynamical processes in
nature do not conform with this picture: Partly, or even fully chaotic motion (i.e. motion that

39To better understand this point, consider the integral of A along an infinitesimal closed curve γ on
the sphere. If A were globally continuous, we would have two choices to transform the integral into
a surface integral over B; an integral over the ‘large’ or the ‘small’ surface area bounded by γ. The
monopole nature of B would demand that both integrals are proportional to the respective area of the
integration domain which, by assumption, are different ❀ contradiction. The resolution of this paradox
is that A must be discontinuous at one point on the sphere, i.e. we cannot globally set B = ∇× A and
the choice of the integration area is prescribed by the condition that it must not encompass the singular
point.

40

Edward Witten 1951–: 1990 Fields Medal for his work
in superstring theory. He made significant contributions
to Morse theory, supersymmetry, and knot theory. Ad-
ditionally, he explored the relationship between quantum
field theory and the differential topology of manifolds of
two and three dimensions.
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depends in a singular and, thereby, in an essentially unpredictable way on initial conditions)
is the rule rather than the exception. In view of the drastic differences in the observable be-
haviour of classically integrable and chaotic systems, an obvious question arises: In what way
does the quantum phenomenology of chaotic systems differ from that associated with integrable
dynamics? This question defines the field of quantum chaos.

Understanding signatures of classically chaotic motion in quantum mechanics is an issue not
only of conceptual, but also of great practical relevance impinging on areas such as quantum
electron transport in condensed matter systems: The inevitable presence of impurities and
imperfections in any macroscopic solid renders the long–time dynamics of electronic charge
carriers chaotic. Relying on a loose interpretation of the Heisenberg principle, ∆t ∼ ~/∆E,
i.e. the relation between long–time dynamical behaviour and small scale structures in energy,
one would expect that signatures of chaotic quantum dynamics are especially important in the
low–energy response in which one is usually interested. This expectation has been confirmed for
innumerable observables related to low temperature electronic transport in solid state systems.

Disordered conducting media represent but one example of a wide class of dynamical systems
with long–time chaotic dynamics. Indeed, recent experimental advances have made it possible
to realize a plethora of effectively non–disordered chaotic dynamical systems in condensed mat-
ter devices. For example, employing modern semiconductor device technology, it has become
possible to manufacture small two–dimensional conducting systems, of a size O(< 1µm) and of
almost any geometric shape. Here, the number of imperfections can be reduced to a negligible
minimum, i.e. electrons propagate ballistically along straight trajectories, as in a billiard. The
smallness of the devices further implies that the ratio between Fermi wavelength and system size
is of O(10−1 −10−3), i.e. while semiclassical concepts will surely be applicable, the wave aspects
of quantum propagation remain visible. In recent years, the experimental and theoretical study
of electron transport in such quantum billiards has emerged as a field in its own right.

How then can signatures of chaotic dynamics in quantum systems be sought? The most fun-
damental characteristic of a quantum system is its spectrum. Although not a direct observable,
it determines the majority of properties accessible to measurement. On the other hand, it is clear
that the manifestations of chaos we are looking for must relate back to the classical dynamical
properties of the system. The question then is, how can a link between classical mechanics and

quantum spectra be drawn? This problem is tailor made for analysis by path integral techniques.

Semiclassical Approximation to the Density of States

The close connection between the path integral and classical mechanics should be evident from
the previous sections. However, to address the problem raised above, we still need to understand
how the path integral can be employed to analyse the spectrum of a quantum system. The latter
are described by the (single–particle) density of states

ρ(ǫ) = tr δ(ǫ− Ĥ) =
∑

a

δ(ǫ− ǫa) , (3.57)

where {ǫa} represents the complete set of energy levels. To compute the sum, one commonly
employs a trick based on the Dirac identity,

lim
δց0

1

x+ iδ
= −iπδ(x) + P 1

x
, (3.58)

where P(1/x) denotes for the principal part of 1/x. Taking the imaginary part of (3.58),
Eq. (3.57) can be represented as ρ(ǫ) = − 1

π Im
∑

a
1

ǫ+−ǫa
= − 1

π Im tr ( 1
ǫ+−Ĥ

), where ǫ+ ≡ ǫ+ iδ
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and the limit limδց0 is implicit. Using the identity 1/x+ = −i
∫ t
0 dt e

ix+t, and representing the

trace tr Â =
∫
dq〈q|Â|q〉 as a real space integral,

ρ(ǫ) =
1

π~

∫ ∞

0
dtRe tr(ei(ǫ

+−Ĥ)t/~) =
1

π
Re

∫ ∞

0
dt eiǫ

+t/~

∫
dq〈q|e−iĤt/~|q〉 , (3.59)

we have made the connection between the density of states and the quantum propagation am-
plitude explicit.

Without going into full mathematical detail (see, for example, Ref. [?] for a modern discourse)
we now outline how this integral is evaluated by path integral techniques within the semiclassical
approximation. Although, for brevity, some of the more tricky steps of the calculation are swept
unter the carpet, the sketch will be accurate enough to make manifest some aesthetic connections
between the spectral theory of chaotic quantum systems and classically chaotic dynamics. (For
a more formal and thorough discussion, we refer to Gutzwiller and Haake.)

Making use of the semiclassical approximation (3.28) established earlier, when substituted

into Eq. (3.59), one obtains ρ(ǫ) ≃ 1
π Re

∫∞
0 dt eiǫ

+t/~
∫
dq A[qcl]e

i
~
S[qcl], where, following our

discussion in section 3.2.2, we have defined A[qcl] ≡ det
(

i
2π~

∂2S[qcl]
∂q(0)∂q(t)

)1/2
and qcl represents a

closed classical path that begins at q at time zero and ends at the same coordinate at time
t. Again relying on the semiclassical condition S[qcl] ≫ ~, the integrals over q and t can be
performed in a stationary phase approximation. Beginning with the time integral, and noticing
that ∂tS[qcl] = −ǫqcl is the (conserved) energy of the path qcl, we obtain the saddle point

condition ǫ
!
= ǫqcl and

ρ(ǫ) ≃ 1

π
Re

∫
dq A[qcl,ǫ]e

i
~
S[qcl,ǫ] ,

where the symbol qcl,ǫ indicates that only paths q → q of energy ǫ are taken into account, and the
contribution coming from the quadratic integration around the saddle point has been absorbed
into a redefinition of A[qcl,ǫ].

 q 

 p  α 

Turning to the q–integration, making use of the fact that ∂qiS[qcl] = −pi, ∂qfS[qcl] = pf ,
where qi,f are the initial and final coordinate of a path qcl, and pi,f are the initial and final mo-

mentum, the stationary phase condition assumes the form 0
!
= dqS[qcl,ǫ] =

(
∂qi + ∂qf

)
S[qcl,ǫ]|qi=qf=q =

pf−pi, i.e. the stationarity of the integrand under the q–integration requires the initial and final
momentum of the path qcl,ǫ be identical. We thus find that the paths contributing to the inte-
grated transition amplitude are not only periodic in coordinate space but even in phase space.
Such paths are called periodic orbits —‘periodic’ because the path comes back to its initial
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phase space coordinate after a certain revolution time. As such, the orbit will be traversed
repeatedly as time goes by (see the figure, where a periodic orbit α with initial coordinates
x = (p, q) is shown).

According to our analysis above, each coordinate point q lying on a periodic orbit is a
stationary phase point of the q–integral. The stationary phase approximation of the integral
can thus be formulated as

ρ(ǫ) ≃ 1

π
Re

∫
dq A[qcl,ǫ]e

i
~
S[qcl,ǫ] ≃

∞∑

n=1

∑

α

∫

α
dq Aαe

i
~
nSα ,

where
∑

α stands for a sum over all periodic orbits (of energy ǫ) and Sα is the action corre-
sponding to one traversal of the orbit (all at fixed energy ǫ). The index n accounts for the fact
that, due to its periodicty, the orbit can be traversed repeatedly, with total action nSα. Fur-
thermore,

∫
α dq is an integral over all coordinates lying on the orbit and we have again absorbed

a contribution coming from the quadratic integration around the stationary phase points in the
pre–exponential amplitude Aα.

Finally, noting that
∫
α dq ∝ Tα, where Tα is the period of one traversal of the orbit α (at

energy ǫ), we arrive at the result

ρ(ǫ) ≃ 1

π
Re

∞∑

n=1

∑

α

TαAαe
i
~
nSα (3.60)

This is (a simplified41) representation of the famous Gutzwiller trace formula. The result is

actually quite remarkable: The density of states, an observable of quantum mechanical signifi-

41Had we carefully kept track of all determinants arising from the stationary phase integrals, the
prefactor Aα would have read

Aα =
1

~

ei π

2
να

|detM r
α − 1| 12

,

where να is known as the Maslov index (an integer valued factor associated with the singular points
on the orbit, i.e. the classical turning points). The meaning of this object can be understood, e.g., by
applying the path integral to the problem of a quantum particle in a box. To correctly reproduce the
spectrum, the contribution of each path must be weighted by (−)n = exp(iπn), where n is the number of
its turning points in the box potential), and Mα represents the Monodromy matrix. To understand
the meaning of this object, notice that a phase space point x̄ on a periodic orbit can be interpreted as
a fixed point of the classical time evolution operator U(Tα): U(Tα, x̄) = x̄, which is just to say that the
orbit is periodic. As with any other smooth mapping, U can be linearized in the vicinity of its fixed
points, U(Tα, x̄+ y) = x̄+Mαy, where the linear operator Mα is the monodromy matrix. Evidently, Mα

determines the stability of the orbit under small distortions, which makes it plausible that it appears as
a controlling prefactor of the stationary phase approximation to the density of states.

⊲ Exercise. Making use of the Feynman path integral, show that the propagator for a particle
of mass m confined by a square well potential of infinite strength is given by

G(qF , qI ; t) =

√
m

2πi~t

∞∑

n=−∞

{
exp

[
im(qF − qI + 2na)2

2~t

]
− exp

[
im(qF + qI + 2na)2

2~t

]}
.
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cance, has been expressed entirely in terms of classical quantities.

3.4 Summary

In this chapter we have introduced the path integral formulation of quantum mechanics, an
approach independent of, yet (modulo certain mathematical imponderabilities related to
continuum functional integration) equivalent to the standard route of canonical operator
quantization. While a few precious exactly solvable quantum problems (e.g. the evolution
of a free particle, the harmonic oscillator, and, perhaps intriguingly, quantum mechanical
spin) are more efficiently formulated by the standard approach, a spectrum of unique
features make the path integral an indispensible tool of modern quantum mechanics: The
path integral approach is highly intuitive, powerful in the treatment of non-perturbative
problems, and tailor–made to formulation of semiclassical limits. Perhaps most impor-
tantly, we have seen that it provides a unifying link whereby quantum problems can be
related to classical statistical mechanics. Indeed, we have found that the path integral of
a quantum point particle is, in many respects, equivalent to the partition function of a
classical one–dimensional continuum system. We have hinted at a generalization of this
prinicple, i.e. an equivalence priniciple relating d–dimensional quantum field theory to
d + 1–dimensional statistical mechanics. However, before exploring this bridge further,
we first need to generalize the concept of path integration to problems involving quantum
fields. This will be the subject of the next chapter.
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