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I. INTRODUCTION

The quantum-mechanical nature of the world does not manifest itself easily in our day-to-day

lives. The eigenstates of a free particle, for instance, are supposed to be plane waves delocalized

over all of space. Yet we never see our pocketwatches in two places at once! Rather, macroscopic

objects exist in localized position (psuedo)-eigenstates and obey classical laws of motion. If we

believe that our world is fundamentally quantum mechanical, then there must be an explanation

for why it behaves classically in warm, macroscopic conditions.

The theory of decoherence gives a compelling explanation of how classical mechanics emerges

from quantum mechanics. It does not rely on arguments of consciousness or wavefunction collapse,

but results from using the framework of well-established quantum theory to analyze quantum

systems interacting with their environment. In essence, when a quantum system becomes entangled

with its surrounding, its characteristic quantum property of interference no longer appears; its

coherence becomes lost from a quantum superposition into a classical mixture of different states.

In many regimes, the (classical) mixture is comprised not of the energy eigenstates of the under-

lying quantum system, but rather of particular “pointer” states that are immune to decoherence

[1]. These pointer states are determined by the interactions with the environment. So even though

a pocketwatch has a free-particle Hamiltonian with plane-wave eigenstates, the interaction with its

surroundings – scattering photons, emitting blackbody radiation, deflecting air molecules – causes

it to localize in position-space rather than momentum-space. In fact, generally, for free particles

coupled to a thermal bath, the environment induces a superselection of minimal-uncertainty Gaus-

sian states [2]. As the theory explains, a (coherent) superposition of a macroscopic object in two

positions rapidly decoheres into a mixture of narrow Gaussian wavepackets. Due to the interac-

tion with the environment, the translational degrees of freedom of a macrosopic object behave

classically.

In this paper, I wish to answer questions about how decoherence affects rotational degrees of

freedom. As a motivational example, consider hydrogen chloride (HCl), a simple diatomic molecule

which can be modeled as a rigid rotator (or equivalently, a particle on a sphere) whose rotational
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eigenstates are the spherical harmonics. These states have distinctively quantum character: In

the ground state (“s”), the hydrogen nucleus is delocalized uniformly over a sphere around the

central chlorine atom; in higher-energy harmonics, the wavefunction of the hydrogen nucleus is

similarly ”smeared out” over many possible orientations. If we look at the rotational spectrum

of HCl at room temperature, we see that the molecules occupy many such rotational states at

room temperature. The rotational wavefunctions of HCl can in fact be selected and imaged [3].

Evidently, small objects can rotate quantum mechanically and exist comfortably in non-classical

rotational eigenstates.

In contrast, larger objects rotate classically. The motion of a gyroscope, for instance, is described

with the rigid-body-motion of classical mechanics. Even objects which are small by our day-

to-day standards, such as proteins (∼ 105a.m.u.), have rotational motion described by classical

equations of motion. For these macroscopic objects, the rotational wavefunctions are well-localized

in orientation, rather than spread out all over all possible orientations.

Somewhere between the length scale of a HCl molecule and a protein, the rotational behavior

of a molecule must transition from quantum mechanical to classical. Decoherence theory says that

this quantum-to-classical transition arises because the interactions with the environment becomes

significant compared to the system’s intrinsic dynamics. For rotations, the larger the rotating body,

the more accurately its orientation is determined by collisions with particles in the environment,

and the resulting entanglement causes the rotational wavefunction to localize in orientation and

effectively behave classically.

Here I explore the quantum-to-classical transition of rotation. I expect the most classical-

like rotational wavefunctions to be somewhat analogous to the coherent states of the harmonic

oscillator; that is, I expect the environment to prefer states that are localized in (classical) phase

space and minimize the Heisenberg uncertainty relation. For simple systems such as the harmonic

oscillator, it is possible to show that indeed the environment-selected states are indeed coherent

states by using arguments about minimizing the loss of purity [4]. I wish to explore whether

rotational degrees of freedom also display similar behavior.

In brief, I aim to understand how the dynamics of a rigid rotor are altered by coupling to the

environment.

A comment. Rather than considering the rotational states of a rigid rotor in three dimensions, I

restrict myself to rotations in two dimensions. This is the problem of a planar rotor, or equivalently,

of a free particle moving on a circle. I chose this system because it is much easier to work with than

the particle moving on a sphere: the rotational states are labeled by one quantum number |l〉 rather
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than two |jm〉, and the classical phase space has a topology much easier to reason about. Hopefully

the planar rotor is sophisticated enough to capture any special features about the decoherence of

rotations compared to translations.

This paper is organized as follows. First in Section II, I discuss the formalism of decoherence,

explaining why a system loses its interference properties when it becomes entangled with its en-

vironment. Next in Section III, I introduce the quantum planar rotor and its behavior under free

evolution. Finally in Section IV, I explore how the quantum planar rotor is affected by interactions

with an external environment by deriving and analyzing the equation of motion of its reduced

density matrix.

II. DECOHERENCE

The simple act of interacting with a surrounding environment causes a quantum system to

lose much of its quantum behavior. In this section, I will illustrate why this is the case, and also

introduce some of the formalism of reduced density matrices that will be used later on to describe

the dynamics of the planar rotor. Much of this material is a review of the existing literature such

as ref. [1], but I believe that one cannot claim to ‘understand decoherence’ without actually going

through the calculations to show its effects. In any case, this background discussion is relevant for

understanding the physics behind the later calculations in Section IV.

A. Entanglement with the Environment Destroys Interference

Even weak interactions with the surrounding environment can profoundly affect the behavior

of a quantum system. In essence, if a system becomes entangled with its environment, then the

interference between states is no longer visible. As an illustration of why this is the case, let us

consider how interactions with the environment affect the classic two-slit experiment.

Suppose a particle can hit a detector by passing through two possible slits, labeled a and b. Say

we block slit b and force it to travel through slit a. Then the particle emerges in a state |a〉. When

it hits the detector, its wavefunction is given by ψa(x) = 〈x|a〉, and according to the Born rule, the

probability that the detector ‘clicks’ at location x is given by Pa(x) = |ψa(x)|2. If we instead block

slit a and force the particle through slot b, then the resulting probability distribution is given by

Pb(x) = |ψb(x)|2 where ψb(x) = 〈x|b〉.

If we let the particle travel through both slits, then it emerges in a superposition |s〉 = (|a〉 +
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|b〉)/
√

2 with a corresponding wavefunction ψab(x) = 〈x|s〉 = (ψa(x) + ψb(x))/
√

2. The resulting

probability distribution of clicks on the detector is given by

Pab(x) = |ψab|2 (1a)

=
1

2
|ψa(x) + ψb(x)|2 (1b)

=
1

2

[
|ψa(x)|2 + |ψb(x)|2 + ψ∗a(x)ψb(x) + ψa(x)ψ∗b (x)

]
(1c)

=
1

2
Pa(x) +

1

2
Pb(x) + Re[ψ∗a(x)ψb(x)]. (1d)

Importantly, the probability is not a simple sum of the probability resulting from each slit. There

is an extra term where the amplitudes of the two paths interfere with each other. This is the

characteristic quantum effect that leads to the non-classical nature of the two-slit experiment.

In the preceding discussion, there was no mention of the environment around the quantum

particle. As foreshadowed earlier, we expect that the environment destroys the extra interference

term in Equation 1d. We will see that it is able to do so even without affecting the intrinsic

dynamics of the particle!

To include the environment into the two-slit experiment, we have to expand our Hilbert space

from just system states to a Hilbert space encompassing product states of the system and the

environment. In other words, the kets now two parts, one of the system and one of the environment.

The simplest environment is one that “smells out” which path the particle takes in the following

sense. Say the environment is initially prepared in a state |E0〉. If we block slit b and force the

particle to pass through slit a, then the system-environment interaction causes the environment to

enter the state |Ea〉:

|a〉|E0〉 −→ |a〉|Ea〉.

If on the other hand the particle passes through slit b, then the system-environment state evolves

as

|a〉|E0〉 −→ |b〉|Eb〉.

Because the Schrodinger Equation is linear, the superposition of states (“passing through both

slits”) must evolve as

1√
2

(|a〉+ |b〉) |E0〉 −→
1√
2

(|a〉|Ea〉+ |b〉|Eb〉) . (2)

The environment states |Ea〉 and |Eb〉 differ in subtle ways; perhaps the surrounding air

molecules have been scattered in a slightly different way from the particle passing through; per-

haps there has been a slight ‘recoil’ of the slit-board in the manner of Bohr and Einstein. The
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main point is that the envrionment is in a different state depending on which slit the particle went

through; if the system is in state |a〉, then the environment is in state |Ea〉, if the system is in state

b〉 then the environment is in state |Eb〉. The environment has become entangled with the state of

the system, and in a sense, it has ‘measured’ the state of the system.

To calculate the probability distribution of detector clicks in the presence of envrionmental

entanglement, it is helpful to use the formalism of (reduced) density matrices. The full Hilbert

space includes both the system and the environment, but if we wish to restrict our attention to

just the system, we need to take a partial trace over the environmental degrees of freedom. The

resulting reduced density matrix for the system captures all the observable behavior for the system,

and “averages out” over the unimportant states of the environment.

When the particle passes through both slits, the full density matrix describing its entanglement

with the surroundings can be written as

ρSE = |Ψ〉〈Ψ| (3a)

=
1

2

[
|a〉〈a||Ea〉〈Ea|+ |b〉〈b||Eb〉〈Eb|+ |a〉〈b||Ea〉〈Eb|+ |b〉〈a||Eb〉〈Ea|

]
(3b)

Taking a partial trace of the system-and-environment density matrix yields the following reduced

density matrix for just the system:

ρS = TrE
[
ρSE

]
(4a)

=
1

2

{
|a〉〈a|Tr

[
|Ea〉〈Ea|

]
+ |b〉〈b|Tr

[
|Eb〉〈Eb|

]
(4b)

+ |a〉〈b|Tr
[
|Ea〉〈Eb|

]
+ |b〉〈a|Tr

[
|Eb〉〈Ea|

]}
(4c)

=
1

2
|a〉〈a|+ 1

2
|b〉〈b|+ 1

2
|a〉〈b|〈Ea|Eb〉+

1

2
|b〉〈a|〈Eb|Ea〉. (4d)

Finally, the distribution of clicks on the detector is given by taking the trace against the position

operator:

P envab = Tr
[
x̂ρS

]
(5a)

= 〈x|ρS |x〉 (5b)

=
1

2
〈x|a〉〈a|x〉+

1

2
〈x|b〉〈b|x〉+

1

2
〈x|a〉〈b|x〉〈Ea|Eb〉+

1

2
〈x|b〉〈a|x〉〈Eb|Ea〉 (5c)

=
1

2
|ψa(x)|2 +

1

2
|ψb(x)|2 + Re

{
〈Ea|Eb〉ψ∗a(x)ψb(x)

}
. (5d)

Notice that the strength of the interference term now depends on the overlap between the

environmental states reading out the two possible paths. In particular, if 〈Ea|Eb〉 = 0 and the
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environmental states are completely distinguishable, then the probability distribution is

P (x)→ 1

2
|ψa(x)|2 +

1

2
|ψb(x)|2 (6)

and the interference completely disappears! The probability becomes a classical sum of the prob-

abilities of passing through individual slits.

If the environment incompletely measures the path of the particle (0 < |〈Ea|Eb〉|2 < 1), then the

interference pattern partially disappears. Remarkably, this result has been experimentally observed

for the interference pattern of C70 buckyballs – as the ambient gas pressure in the experimental

chamber is increased, the visibility of the interference fringes goes down, indicating that collisions

with surrounding gas particles cause the buckyballs to transition from quantum to classical behavior

[5]. Philosophicallly, there is no definitive line between quantum and classical behavior, but rather,

systems gradually transition from one regime to another as the amount of system-environment

entanglement increases.

The above calculation is rather simple, but its implications are profound. Of particular note,

the entanglement with the environment causes the system (that is, its reduced density matrix) to

behave as a classical mixture of states (ρ ∼ |a〉〈a| + |b〉〈b|) rather than a quantum superposition

(ρ ∼ (|a〉 + |b〉)(〈a| + 〈b|)). Once it becomes a classical mixture, the characterstic coherence of

the quantum state that gives rise to interference terms between different parts of a superposition

– such as ψ∗a(x)ψb(x) – no longer appears in observable probabilities. This decoherence happens

regardless of how exactly the system and the envrionment interact; in particular, it can happen

without dissipation (energy loss) of the underlying quantum system. Furthermore, there is no

need for an observing apparatus or a conscious observer; the decoherence happens as long as the

system-environment interaction leaves a ‘mark’ on the environment about which of the two paths

was traversed. The effective dynamics result simply from the entanglement with the environment.

III. THE PARTICLE ON A CIRCLE

Having paid our dues to decoherence, we turn now to the quantum mechanics of a particle on a

circle. [Note that this problem is equivalent to a rotor restricted to a plane; the orientation of the

rotor corresponds to the (angular) position on the circle, and its moment of inertia corresponds to

the particle’s mass.]
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A. Position and Momentum Eigenstates

The position of the particle (or orientation of the rotator) is described by an angle φ. We take

the principal value of φ to lie in the range −π ≤ φ < π, where the points φ = −π and φ = π

describe the same position. The eigenstates of this ‘position’ operator describe particles localized

at one angle on the circle and are labeled as |φ〉.

Since φ is inherently multi-valued with a sudden ‘branch cut’ somewhere on the unit circle, it

is more convenient to work with the unitary operator

Û := eiφ̂ (7)

with eigenbasis

Û |φ〉 = eiφ|φ〉 (8)

representing the position on the (complex) unit cricle. We can also define corresponding Hermitian

operators representing the x and y displacements on the circle, given by

cos φ̂ :=
Û + Û †

2
(9)

and

sin φ̂ :=
Û − Û †

2i
(10)

respectively.

The general state on the circle |α〉 is described by a wavefunction ψα(φ) = 〈φ|α〉, where φ = φ0

and φ = φ0 + 2π represent the same point on the circle. For the wavefunction to be single-valued,

it must be periodic with a period of 2π. As a result, the Fourier series of the wavefunction is

composed of a discrete spectrum of momentum states.

To see how momentum is quantized, let us consider an (angular) momentum eigenstate |`〉. It

is defined by the relation

L̂|`〉 = `|`〉, (11)

where L̂ is the angular momentum operator −i ∂∂φ . As usual, the wavefunction of a momentum

eigenstate in the position basis is given by

ψ`(φ) = 〈φ|`〉 =
1√
2π
ei`φ, (12)
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with the factor out front coming from normalization 1 =
∫ +π
−π |ψ`(φ)|2dφ. For the wavefunction to

be single-valued, ` must be an integer [6], and to complete the entire Hilbert space, ` must take on

all positive and negative integer values: ` = 0,±1,±2, . . ..

Notice that Û increases the angular momentum of a rotational eigenstate by one; i.e., it is a

raising operator. To see this, we compute

Û |`〉 = Û

∫ +π

−π

ei`φ√
2π
|φ〉dφ (13)

=

∫ +π

−π

ei`φ√
2π
eiφ|φ〉dφ (14)

=

∫ +π

−π

ei(`+1)φ

√
2π
|φ〉dφ (15)

= |`+ 1〉. (16)

Similarly,

Û † = |`− 1〉. (17)

In the language of Fourier Series, the momentum eigenstates form a basis of complex exponen-

tials for the space of all functions with a period of 2π. An arbitrary state |α〉 can be written in the

position representation as

|α〉 =

∫ +π

−π
ψα(φ) |φ〉 dφ (18)

or in the momentum representation as

|α〉 =

+∞∑
`=−∞

ψ̂α[`] |`〉 (19)

where the momentum-space-coefficients ψ̂α[`] are the Fourier coefficients for the position-space

wavefunction:

ψα(φ) =
+∞∑
`=−∞

ψ̂α[`]
ei`φ√

2π
. (20)

These statements can be summarized in the resolution of the identity:

I =

∫ +π

−π
|φ〉〈φ| dφ =

+∞∑
`=−∞

|`〉〈`|. (21)
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B. Dynamics

The free particle Hamiltonian for the particle on a circle is analogous to the p2/2m for the

praticle on a line, except the linear momentum is replaced with the angular momentum L, and the

mass is replaced with the moment of inertia I. Hence the Hamiltonian is

H =
L2

2I
(22)

and the equation of motion is

d

dt
|Ψ〉 = −iH|Ψ〉 = −i L̂

2

2I
|Ψ〉. (23)

The energy eigenstates are the (angular) momentum eigenstates |`〉, which are delocalized over all

the angles of the circle.

Rather than explicitly solving this equation, I will just describe the behavior qualitatively. If a

particle begins in a momentum eigenstate, it stays in that eigenstate (but picks up a time-varying

phase.) If it begins in a position eigenstate, it quickly spreads out, but unlike the like the free

particle on a line, the probability density does not escape out to infinity but is trapped on the circle.

The periodicity of 2π may cause some interesting beating effects, but in essence, the wavepacket

slowly spreads over time. If the particle begins in a narrow superposition of position eigenstates in

a wavepacket-like form, the time evolution still causes it to spread out and eventually spread all

over the circle.

IV. DECOHERENCE OF THE PARTICLE ON A CIRCLE

Now we add environmental interactions to the dynamics of the free particle on a circle [7].

A. Form of the Master Equation

As shown in section II, the interaction with the environment causes the system to no longer

behave as a pure state but as a mixture. Thus, to describe how the system evolves in the presence

of the environment, we cannot use an equation for a quantum state like Equation 23; we need to

use an equation describing how the system’s density matrix evolves.

Formally, the combined system-environment evolves unitarily according to the laws of quantum

mechanics, but if we wish to study the dynamics of the system, we need to trace out over the

environmental degrees of freedom and end up with the effective dynamics of the system’s reduced
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density matrix. Note that the tracing operation is non-unitary, so in general, the time evolution

of the system will no longer be unitary. (This does not imply that quantum mechanics as a whole

is non-unitary; it just means that if we only restrict our attention to the central system and ignore

the environment, then the system effectively evolves non-unitarily.)

In the absence of the environment, the system’s density matrix evolves as

∂

∂t
ρ =

d

dt
(|Ψ〉〈Ψ|) (24)

=

(
d

dt
|Ψ〉
)

+ |Ψ〉
(
d

dt
〈Ψ|
)

(25)

= (−iH|Ψ〉) 〈Ψ|+ |Ψ〉 (〈Ψ|iH) (26)

= −iHρ+ iρH (27)

= −i[H, ρ]. (28)

When we include the effects of the environment, there will be an extra non-unitary part:

∂

∂t
ρ = −i [H, ρ] +D

[
ρ
]

(29)

The exact form of D[ρ] depends on the nature of the system-environment interaction in the

particular system we are considering. If we wish to describe the rotational states of a molecule

(gaseous HCl, say), then the extra term would contain contributions from the following processes:

• The molecule emits a photon and transitions from one rotational state to another (sponta-

neous emission).

• A pair of nearby molecules exchange a virtual photon, exciting one molecule and de-exciting

another, entangling their rotational states.

• A molecule collides with another molecule, exchanging (translational) momentum and an-

gular momentum.

The first two interactions involve the angular momentum operator of the rotating molecule,

and hence do not localize the orientational state of the molecule. Collisions, on the other hand,

depends on the exact orientation of the colliding molecules, and hence are capable of decohering

any superpositions of different orientations of the molecule. More precisely, the molecule-molecule

interaction depends on the radial distance between the nuclei – the position operator – and since

the interaction depends on the positions of the nuclei, it is capable of ‘measuring’ the angular

orientation of the molecule.
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How effectively a collision decoheres superpositions of different orientations depends on the size

of the molecule. For small molecules like HCl, a single collision is not able to measure with great

precision the angle of the hydrogen atom. This is because the hydrogen atom is weakly interacting

(compared to the Cl electron cloud), and because its distance from the center of mass is small (so

that a small uncertainty in position means a large uncertainty in angle). Nevertheless, over the

course of many collisions, the information about the orientation of the hydrogen atom will slowly

become encoded in the environment (by entanglement with other molecules’ orientations), and

eventually, the hydrogen atom will be localized as a result of these collisions. For larger molecules

such as proteins which consist of thousands of atoms locked in a (mostly) rigid body, the situation

is different. In this case, a single collision with a surrounding solvent molecule is able to localize

its overall rotational wavefunction to a particular orientation. This is because a single scattering

event determines the location of an atom and hence the orientation of the molecule. In this case,

the decoherence rate is maximal and simply equivalent to the total scattering rate of environmental

particles off the rotating molecule.

In the langauge of the decoherence theory, the small-molecule and large-molecule cases differ

by how much orientational information gets encoded in the environment as a result of a single

collisional event. For small molecules, a collision provides partial which-path information, while

for large molcules, it provides full which-path information. [Schematically, the overlap between

the environmental states 〈Ea|Eb〉 is nonzero for small molecules, but is essentially zero for larger

molecules.] In the full-which-path-information scenario, the decoherence rate is simply the rate of

scattering events, but in the partial-which-path-information scenario, the dynamical processes can

be more nuanced.

An Analogy. The theory of how collisions cause localization of translational degrees of freedom

also involves two regimes. Here the question is about how well collisions can resolve a coherent

superposition of two well-localized wavepackets located a distace ∆x apart (‘positional resolution’)

[1]. If the (de Broglie) wavelength λ0 of the scattered particle is much smaller than the coherent

separation ∆x, then one scattering event suffices to localize the particle. In the opposite regime

where λ0 � ∆x, many scattering events are required to encode enough information about the

location of the particle into the environmental degrees of freedom. These are known as the long-

wavelength and short-wavelength limits, respectively. The discussion below happens in the long-

wavelength limit where multiple scattering events are required in order to fully resolve the position.
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B. The Caldeira-Leggett Model

Now I discuss the mathematical form of the non-unitary part D[ρ] in the master equation

(Equation 29). I will use the Caldeira-Legget model [8], which treats the environment as a collection

of harmonic oscillators bilinearly coupled to the position of the central degree of freedom. (This

form of environment is quite general for many sorts of open quantum systems [8].)

The derivation of the Caldeira-Leggett equation involves many assumptions about the nature of

the environment and of the interaction Hamiltonian. For the system discussed in this paper – the

rotations of gas-phase HCl – most of these assumptions are met. These include the long-wavelength

limit (i.e., many collisions are necessary to resolve orientation), a high-temperature environment

compared to the energy spacings of the system, Markovian behavior (i.e., the environment forgets

its state between collisions), and more [1]. Hence we can believe that the model discussed below

adequately represents the physics of HCl.

In the Caldeira-Leggett model, the central system is a particle on a line. After a series of long

manipulations and assumptions, Caldeira and Legget arrive at the following form of the master

equation:

∂

∂t
ρ = −i

[
H ′, ρ

]︸ ︷︷ ︸
unitary

− iγ0 [x̂, p̂ρ+ ρp̂]︸ ︷︷ ︸
dissipation

− 2mγ0kBT [x̂, [x̂, ρ]]︸ ︷︷ ︸
decoherence

(30)

In this expression, x̂ and p̂ are the position and momentum operators for the particle on the

line, γ0 is a damping constant that depends on the coupling strengths of the central system to

the surrounding harmonic oscillators, and kBT is the temperature. Each of the terms can be

interpreted easily. The first term is the standard unitary evolution of a quantum system, slightly

modified (lamb-shifted from H to H ′) due to the environment’s effects. The second term is the

classical momentum dissipation that takes energy out of the system and causes it to thermally

equilibrate with the surrounding heat bath. The third term is distinctly quantum mechanical and

results in decoherence [1].

Dissipation and decoherence occur on different timescales. We can figure out the ratio between

these timescales by looking at the second and third terms in equation 30. The second term tells

us that the dissipation rate is γ0. The third term is a bit more complicated. The coefficient of

2mkBT is related to the thermal de Broglie wavelength

λdB = 1/
√

2mkBT (31)
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of the particle, and the double commutator in the dissipation term can be expanded out as

[x̂, [x̂, ρ]] = [x̂, x̂ρ− ρx̂] (32)

= x̂x̂ρ+ ρx̂x̂− 2x̂ρx̂. (33)

If we write the density matrix out in its position state representation as

〈x|ρ|x′〉 = ρ(x, x′), (34)

we see that the double commutator becomes

〈x[x̂, [x̂, ρ]]x′〉 = x2ρ(x, x′) + ρ(x, x′)(x′)2 − 2xρ(x, x′)x′ (35)

=
(
x2 + (x′)2 − 2xx′

)
ρ(x, x′) (36)

= (x− x′)2ρ(x, x′). (37)

The size of the decoherence term is hence quadratic in the extent of coherent spatial spread x− x′

in the wavefunction. Putting these facts together, we see that decoherence occurs with a rate of

Γ = 2mkBT
(
x− x′

)2
γ0 =

(
x− x′

λdB

)2

γ0. (38)

It is helpful to plug in some numbers to compare the rates of dissipation and decoherence. For

a HCl molecule, the wavefunction of the hydrogen nucleus is at most spread out over twice the

length of the H-Cl bond, so x − x′ ≈ 2.6Å. At room temperature, its de Broglie wavelength is

λdB ∼ 0.3Å, so the decoherence occurs on a timescale roughly (2.6/0.3)2 ≈ 75 times more rapidly

than dissipation. For larger molecules, the separation in timescales becomes even more pronounced,

since the rotational eigenstate spans a larger spatial extent and the mass of the molecule increases.

Hence, if we just care about the behavior over decoherence timescales, we can ignore the dissi-

pative term, simplifying the master equation to

∂

∂t
ρ ≈ −i

[
H ′, ρ

]
− 2mγ0kBT [x̂, [x̂, ρ]] (39)

= −i
[
H ′, ρ

]
− 2mγ0kBT (x̂x̂ρ+ ρx̂x̂− 2x̂ρx̂) . (40)

C. Caldiera-Legget for the circle

Now I extend the Caldeira-Legget model to describe the motion of a particle on a circle rather

than on a line.
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Say the particle of mass m is constrained to move on a circle with radius r0. The coordinates

of the particle are described by x̂ = r0 cos φ̂ and ŷ = r0 sin φ̂, where φ is the angular coordinate

along the circle. To model the environmental interaction, I suppose that each of the translational

directions – x and y – are coupled to the surroundings in the same manner as the 1D Caldeira-

Leggett model (Equation 39). This form of the interaction is justifiable if the the collisions in the

two directions are identical and uncorrelated. In essense, in my model, I ‘stitch on’ two Caldeira-

Leggett models in the x and the y directions, and constrain the particle to move on a circle of fixed

radius.

The resulting decoherence term looks like

D[ρ] = −2mγ0kBT
{

[x̂, [x̂, ρ]] + [ŷ, [ŷ, ρ]]
}
, (41)

which can be expanded out as

D[ρ] = −2mγ0kBT
{(
x̂2ρ+ ρx̂2 − 2x̂ρx̂

)
+
(
ŷ2ρ+ ρŷ2 − 2ŷρŷ

)}
(42)

= −2mγ0kBT
{
r20

(
sin2 φ̂ρ+ ρ sin2 φ̂− 2 sin φ̂ρ sin φ̂

)
+ (43)

r20

(
cos2 φ̂ρ+ ρ cos2 φ̂− 2 cos φ̂ρ cos φ̂

)}
(44)

= −2mr20 γ0kBT
{

2ρ− 2 sin φ̂ρ sin φ̂− 2 cos φ̂ρ cos φ̂
}
, (45)

where between the last two lines I used the identity sin2 φ̂ + cos2 φ̂ = I. The coefficient can be

simplified further: the mr20 part is the moment of inertia I of the particle on the ring, and so

the mr20kBTγ0 can be identified as the rotational diffusion coefficient D by using the fluctuation-

dissipation relation for rotational diffusion. (Recall that when a classical angle variable φ is coupled

to a heat bath, it diffuses around with the relation 〈φ2〉 = 2(IkBTγ0)t.)

Hence we have

D[ρ] = 4D
(

sin φ̂ ρ sin φ̂+ cos φ̂ ρ cos φ̂− ρ
)

(46)

where the rotational diffusion coefficient D is given by

D = mr20kBTγ0. (47)

For further analysis it is helpful to rewrite the sines and cosines in terms of the raising and

lowering operators U = eiφ̂ and U † = e−iφ̂. We find that

cos φ̂ ρ cos φ̂+ sin φ̂ ρ sin φ̂ =

(
U + U †

2

)
ρ

(
U + U †

2

)
+

(
U − U †

2i

)
ρ

(
U − U †

2i

)
(48)

=
1

2
U †ρU +

1

2
UρU † (49)
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so the overall master equation is

d

dt
ρ(t) ≈ − i

2I

[
L̂2, ρ(t)

]
+ 4D

(
1

2
U †ρ(t)U +

1

2
Uρ(t)U † − ρ(t)

)
. (50)

D. Decoherence Dynamics

Now I analyze the dynamical behavior of Equation 50. There is no closed-form solution for this

equation, so I will make some approximations and examine the behavior of limiting cases to try to

gain some intuition about how the system behaves.

Let us consider what happens when the particle starts off in its pure ground state

|0〉 =
1√
2π

∫ +π

−π
|φ〉 dφ (51)

where its wavefunction Ψ(φ, t = 0) = 1/
√

2π spread out uniformly all around the circle. This

ground state is distinctly non-classical because it is a coherent superposition of different position

eigenstates. We expect that the decoherence term will rapidly decohere it into a classical mixture

rather than a quantum superposition.

To be more precise, we can look at the density matrix in the position representation, given by

ρ(t = 0) = |0〉〈0| = 1√
2π

∫
|φ〉〈ψ| dφdψ. (52)

The nonzero off-diagonal terms with φ 6= ψ indicate that there is quantum interference between

the amplitudes of different positions. As the system evolves and decoheres, we expect that the

off-diagonal terms (in the position basis) will decay with time. This is analogous to equation 4d,

where the interaction with the environment causes a damping of the off-diagonal elements of the

density matrix.

After fiddling around with the equation for a bit, one realizes that the dynamics do not cause

the different angular momentum eigenstates to mix with each other. This means that we can look

for an ansatz of the form

ρ(t) =

+∞∑
`=−∞

c`(t)|`〉〈`|, (53)

where the coefficients c`(t) are the dynamical variables to solve for. Our initial condition of ρ(0) =

|0〉〈0| corresponds to c`(0) = δ0,`. (Note that the density matrix is diagonal in the momentum

basis but not the position basis.)

The first term in Equation 50 (describing unitary evolution) is zero because both the density

matrix (Equation 53) and the system Hamiltonian are diagonal in the momentum basis. To find the
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second term, we plug in the ansatz and sandwich both sides of the master equation with 〈`| . . . |`〉.

This gives us

ċ`(t) = 4D

(
−c`(t) +

1

2
〈`|U †

[∑
m

cm(t)|m〉〈m|

]
U |`〉+ “h.c.”

)
(54)

= 4D

(
−c`(t) +

1

2

∑
m

cm(t)
{
〈`|U †|m〉〈m|U |`〉+ 〈`|U |m〉〈m|U †|`〉

})
(55)

= 4D

−c`(t) +
1

2

∑
m

cm(t)
{
〈`+ 1|m〉〈m|`+ 1〉︸ ︷︷ ︸

δ`+1,m

+ 〈`− 1|m〉〈m|`− 1〉︸ ︷︷ ︸
δ`−1,m

} (56)

= 4D

(
−c`(t) +

1

2
c`+1(t) +

1

2
c`−1(t)

)
. (57)

Remarkably, the coefficients c`(t) evolve as the probabilities of a continuous-time, discrete-

space random walk. We can interpret the ` values as discrete sites spaced out along a line, and the

coefficients c`(t) as the probability that a random walker occupies the site ` after time t. Every

1/4D unit of time, there is a probability of 1
2 that the walker can jump to the left or to the right.

The resulting fluxes of probability into and out of each location yields Equation 57.

The exact probability distribution resulting from this stochastic process is complicated, so for

our purposes, it is best to invoke the central limit theorem and work in a regime where ` � 1

but ` is not too many standard deviations away from the mean. Under this approximation, the

distribution over `s is a Gaussian whose variance grows linearly with time (as expected for a random

walk), and so the density matrix evolves roughly as

ρ(t) ≈ 1√
8πDt

∑
`

e−`
2/8Dt|`〉〈`|. (58)

Note that this expression is not to be taken too literally. For small values of `, the discrete

nature of angular momentum means that the Gaussian approximation is not very good. For

large values of ` more than a few standard deviations
√

8Dt away from ` = 0, the tails of the

probability distribution are exponential rather than Gaussian, so the approximation fails there as

well. Additionally, this spreading-out-in-angular-momentum cannot continue indefinitely, because

the larger ` states have greater energy and the environment cannot put energy into the rotor

forever. Eventually as time goes on, the system reaches thermal equilibrium with its environment,

meaning that the density matrix becomes

ρeq = eH/kT =
∑
`

e`
2/2IkT |`〉〈`|. (59)
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The reason that the spread in ` eventually stops growing is that the dissipative term (Eq. 30) starts

to matter once t approaches the dissipative timescale t ∼ 1/γ0. We expect that the dissipative

term, instead of putting energy into the rotor, will take energy out of the rotor. The balancing

between the decoherence and dissipative effects will result in thermal equilibrium. As a sanity

check, if we set the thermal density matrix (Eq. 59) equal to the approximation from the central

limit theorem neglecting dissipation (Eq. 58), we find that they look like each other once

2IkT ∼ 8Dt =⇒ t ∼ 1/4γ0 (60)

(keeping in mind the fluctuation-dissipation relation D = IkTγ0) [9].
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